Bit-Sliced Microprocessor of the Am2900 Family: The Am2901/2909"

Introduction
The Am2900 Family

The Am2900 Family consists of a series of LSI building blocks designed for use in
microprogrammed computers and controllers. Each device is designed to be expandable and
sufficiently flexible to be suitable for emulation of many existing machines.

Figure 1 illustrates a typical system architecture. There are two "sides" to the system. At the
left is the control circuitry and on the right is the data manipulation circuitry. The block
labeled "2901 array™ consists of the ALU, scratchpad registers, and data steering logic (all
internal to the Am2901's), plus left/right shift control and carry lookahead circuit. Data is
processed by moving it from main memory (not shown) into the 2901 registers, performing
the required operations on it, and returning the result to main memory. Memory addresses
may also be generated in the 2901's and sent out to the memory address register (MAR). The
four status bits from the 2901's ALU are captured in the status register after each operation.

The logic on the left side is the control section of the computer. This is where the Am2909 is
used. The entire system is controlled by a memory, usually PROM, which contains long
words called microinstructions. Each microinstruction contains bits to control each of the data
manipulation elements in the system. There are, for example, 9 bits for the 2901 instruction
lines, 8 bits for the A and B register addresses, 2 or 3 bits to control the shifting multiplexers
at the ends of the 2901 array, and bits to control the register enables on the MAR, instruction
register, and various bus transceivers. When the bits in a microinstruction are applied to all
the data elements and everything is clocked, then one small operation (such as a data transfer
or a register-to-register add) will occur.

Each microinstruction contains not only bits to control the data hardware, but also bits to
define the location in PROM of the next microinstruction to be executed. The fields are
labeled in Fig. 1 as I, CC, and BA. The I field controls the sequencer. It indicates where the
next address is located-the p PC, the stack, or the direct inputs-and whether the stack is to be
pushed or popped.

The CC field contains bits indicating the conditions under which the I field applies. These are
compared with the condition codes in the status register and may cause modification to the |
field. The comparing and modification occurs in the block labeled "control logic.” Frequently
this is just a PROM. The BA field is a branch address or the address of a subroutine.

Pipelining

The address for the microinstructions is generated by the sequencer, starting from a clock
edge. The address goes from the sequencer to the ROM, and an access time later, the
microinstruction is at the ROM outputs.

A pipeline register is a register placed on the output of the microprogram memory to
essentially split the system in two. The pipeline register contains the microinstruction
currently being executed — . (Refer to the circled numbers in Fig. 1.) The data manipulation
control bits go out to the system elements and a portion of the microinstruction is returned to
the sequencer to determine the address of the next microinstruction to be executed. That
address ® is sent to the ROM, and the next microinstruction sits at the input of the pipeline
register. So while the 2901's are executing one instruction, the next instruction is being
fetched from ROM. Note that there is no sequential logic in the sequencer between the select
lines and the output. This is important because the loop - to to ® to must occur during a
single clock cycle. During the same time, the loop from = to ° must occur in the 2901's. These
two paths are roughly the same (around 200 ns worst case for a 16-bit system). The presence
of the pipeline register allows the microinstruction fetch to occur in parallel with the data
operation rather than serially, allowing the clock frequency to be doubled.

The emulation of an existing machine by Fig. 1 works as follows. A sequence of
microinstructions in the PROM is executed to fetch an instruction from main memory. This
requires that the program counter, often in a 2901 working register, be sent to the memory
address register and incremented. The data returned from memory is loaded into the
instruction register. The contents of the instruction register are passed through a PROM or
PLA to generate the address of the first microinstruction which must be executed to perform
the required function. A branch to this address occurs through the sequencer. Several
microinstructions may be executed to fetch data from memory, perform ALU operations, test
for overflow, and so forth. Then a branch will be made back to the instruction fetch cycle. At
this point, there may be branches to other sections of microcode. For example, the machine
might test for an interrupt here and obtain an interrupt service routine address from another
mapping ROM rather than start on the next machine instruction.

! Abstracted from The Am2DOO Family Data Book, Advanced Micro Devices, Inc., 1976.

ke

P

COSTAGL
AL
PN, S

s m
PRy kg '
L T e —

|
[
Micraingructian curman tFy baing muscuted

Ssquencer controd fees psiect cource of wrerim
PR FTIETOINA FUER 0N Eddras

ELEMmEREE
e WNARLEE M
Mex microd netructinn pcdeemy LA LE T
Mt micmlngiruothan

Buatag Biey Trom EUrTEEL ool el L

T I R T Y

Stariug tiks Tram Lt Mo nas tesn

Fig. 1

Am2901: Four-Bit Bipolar Microprocessor Slice

The device, as shown in Fig. 2, consists of a 16-word by 4-bit two-port RAM, a high-speed
ALU, and the associated shifting, decoding, and multiplexing circuitry. The 9-bit
microinstruction word is organized into three groups of 3 bits each and selects the ALU
source operands, the ALU function, and the ALU destination register. The microprocessor is
cascadable with full lookahead or with ripple carry, has three-state outputs, and provides
various status flag outputs from the ALU. Advanced low-power Schottky processing is used
to fabricate this 40-lead LSI chip.

Architecture

A detailed block diagram of the bipolar microprogrammable microprocessor structure is
shown in Fig. 3. The circuit is a 4-bit slice cascadable to any number of bits, Therefore, all
data paths within the circuit are 4 bits wide. The two key elements in the Fig. 3 block diagram
are the 16-word by 4-bit two-port RAM and the high-speed ALU.

Data in any of the 16 words of the random-access memory (RAM) can be read from the A
port of the RAM as controlled by the 4-bit A address field input. Likewise, data in any of the
16 words of the RAM as defined by the B address field input can be

MICROPROCESSOR SLICE BLOCK DIAGRAM

marmaomal aiu

Fig. 2. Microprocessor slice block diagrarm.

simultaneously read from the B port of the RAM. The same code can be applied to the A
select field and B select field, in which case the identical file data will appear at both the
RAM A port and B port outputs simultaneously.

When enabled by the RAM write enable (RAM EN), new data is always written into the field
(word) defined by the B address field of the RAM. The RAM data-input field is driven by a
three-input multiplexer. This configuration is used to shift the ALU output data (F) if desired.
This three-input multiplexer scheme allows the data to be shifted up one bit position, shifted
down one bit position, or not shifted in either direction.

The RAM A port data outputs and RAM B port data outputs drive separate 4-bit latches.
These latches hold the RAM data while the clock input is LOW. This eliminates any possible
race conditions that could occur while new data is being written into the RAM.

The high-speed Arithmetic Logic Unit (ALU) can perform three binary arithmetic and five
logic operations on the two 4-bit words R and S. The R input field is driven from a two-input
multiplexer, while the S input field is driven from a three-input multiplexer. Both multiplexers
also have an inhibit capability; that is, no data is passed. This is equivalent to a zero source
operand.

In Fig. 3, the ALU R-input multiplexer has the RAM A port and the direct data inputs (D)
connected as inputs. Likewise, the ALU S-input multiplexer has the RAM A port, the RAM B
port, and the Q register connected as inputs.

The two source operands not fully described as yet are the D input and Q input. The D input is
the 4-bit-wide direct data-field input. This port is used to insert all data into the working
registers inside the device. Likewise, this input can be used in the ALU to modify any of the
internal data files. The Q register is a separate 4-bit file intended primarily for multiplication
and division routines, but it can also be used as an accumulator or holding register for some
applications.

This multiplexer scheme gives the capability of selecting various pairs of the A, B, D, Q, and
O inputs as source operands to the ALU. These five inputs, when taken two at a time, result in
ten possible combinations of source operand pairs. These combinations include AB, AD, AQ,
AO, BD, BQ, BO, DQ, DO, and QO. It is apparent that AD, AQ, and AO are somewhat
redundant with BD, BQ, and BO in that if the A address and B address are the same, the
identical function results. Thus, there are only seven completely non-redundant source
operand pairs for the ALU. The Am2901 microprocessor implements eight of these pairs. The
microinstruction inputs used to select the ALU source operands are the I, 11, and I, inputs.
The definitions of o, 11, and I, for the eight source operand combinations are as shown in
Tablel. Also shown is the octal code for each selection.

The I3, 14, and Is microinstruction inputs are used to select the ALU function. The definition of
these inputs is shown in Table 2. The octal code is also shown for reference. The normal
technique for cascading the ALU of several devices is in a lookahead carry mode. Carry
generate, G, and carry propagate, P, are outputs of the device for use with a carry-lookahead
generator such as the

Table 1 ALU Source Operand Control

Microcode ALU source operands
P I 1o Octal code R S
L L L 0 A Q
L L H 1 A B

L H H 3 o] B
H L L 4 o] A
H L H 5 D A
H H L 6 D Q
H H H 7 D 0]
ey I h; iy
, " i —
i — =
— [I i1
] e Bl _
s Pt T e l
i T
T N [B] I — b
- (-
- | | |
g HJJ;(T e e e
., ; ., 1
e ey - =
A -I, -I. e et
|
Fig. 3. Detailed Am2%01 microprocessor block diagram.
Microcode ALU function Symbol
Is Iy I3 Octal code
L L L 0 R plus S R+S
L L H 1 S minus R S-R
L H L 2 R minus S R-S
L H H 3 RORS RVS
H L L 4 R AND S RAS

H L H 5 ‘RAND S RAS
H H L 6 REX-ORS RV S

H H H 7 R EX-NOR S RV §

Am2902 ('182). A carry-out, Cy.4, is also generated and is available as an output for use as the
carry flag in a status register. Both carry-in (C,) and carry-out (Cy.4) are active HIGH.

The ALU has three other status-oriented outputs. These are F3, F = 0, and overflow (OVR).
The F3 output is the most significant (sign) bit of the ALU and can be used to determine
positive or negative results without enabling the three-state data outputs. F3 is non-inverted
with respect to the sign bit output Ys. The F = 0 output is used for zero detect. It is an open-
collector output and can be wire ORed between microprocessor slices. F = 0 is HIGH when
all F outputs are LOW. The overflow output(OVR) is used to flag arithmetic operations that
exceed the available 2's complement number range. The overflow output (OVR) is HIGH
when overflow exists; that is, when Cp.3 and C,.4 are not the same polarity.

The ALU data output is routed to several destinations. It can be a data output of the device
and it can also be stored in the RAM or the Q register. Eight possible combinations of ALU
destination functions are available as defined by the I, 17, and Ig microinstruction inputs.
These combinations are shown in Table 3.

The 4-bit data output field (Y) features three-state outputs and can be directly bus-organized.
An output control (OE) is used to enable the three-state outputs. When OE is HIGH, the Y
outputs are in the high-impedance state.

A two-input multiplexer is also used at the data output such that either the A port of the RAM
or the ALU outputs (F) are selected at the device Y outputs. This selection is controlled by the
ls, 17, and Ig microinstruction inputs. Refer to Table 3 for the selected output for each
microinstruction code combination.

As was discussed previously, the RAM inputs are driven from a three-input multiplexer. This
allows the ALU outputs to be entered non-shifted, shifted up one position (multiplied by 2), or
shifted down one position (divided by 2). The shifter has two ports; one is labeled RAM;and
the other is labeled RAMs. Both of these ports consist of a buffer-driver with a three-state
output and an input to the multiplexer. Thus, in the shift-up mode, the RAM; buffer is enabled
and the RAMy multiplexer input is enabled. Likewise, in the shift-down mode, the RAMy
buffer and RAM; input are enabled. In the no-shift mode, both buffers are in the high-
impedance state and the multiplexer inputs are not selected. This shifter is controlled from the
ls, 17, and Ig microinstruction inputs as defined in Table 3.

Table 3 ALU Destination Control

Microcode RAM function Q-register RAM shifter Q
function shifter
Y
I ls Octal Code Shift Load Shift Load gutput RAMo RAMs Qo Qs
L L 0 X None None F—Q F X X X X
L H 1 X None X None F X X X X
H L 2 None F—>B X None A X X X X
H H 3 None F—> B X None F X X X X
L L 4 Down Fl2— B Down Q/2— F Fo IN3 Qo IN3
Q

L H 5 Down Fl2—B X None F Fo IN3 Qo X
H L 6 Up 2F—>B Up 20-Q F INo Fs INo Qs
H H 7 Up 2F—> B X None F INg F3 X Q3

X-Don't care. Electrically, the shift pin isa TTL input internally connected to a three-state output which is in the high impedance state.
B-Register Addressed by B inputs.

Up is toward MSB. Down is toward LSB.

Similarly, the Q register is driven from a three-input multiplexer. In the no-shift mode, the
multiplexer enters the ALU data into the Q register. In either the shift-up or shift-down

mode, the multiplexer selects the Q register data appropriately shifted up or down. The Q
shifter also has two ports; one is labeled Qg and the other is Q3. The operation of these two
ports is similar to the RAM shifter and is also controlled from Ig, I, and Ig as shown in Table
3.

The clock input to the Am2901 controls the RAM, the Q register, and the A and B data

latches. When enabled, data is clocked into the Q register on the LOW-to-HIGH transition of
the clock. When the clock input is HIGH, the A and B latches are open and will pass whatever
data is present at the RAM outputs. When the clock input is LOW, the latches are closed and
will retain the last data entered. If the RAM EN is enabled, new data will be written into the
RAM file (word) defined by the B address field when the clock input is LOW.

There are eight source operand pairs available to the ALU as selected by the Iy, 11, and I,
instruction inputs. The ALU can perform eight functions—five logic and three arithmetic. The
I3, l4, and Is instruction inputs control this function selection. The carry input, C,, also affects
the ALU results when in the arithmetic mode. The C,, input has no effect in the logic mode.
When Iy through Is and C, are viewed together, the matrix of Table 4 results. This matrix fully
defines the ALU/source operand function for each state.

The ALU functions can also be examined on a "task" basis, i.e., add, subtract, AND, OR, etc.
In the arithmetic mode, the carry will affect the function performed; while in the logic mode,
the carry will have no bearing on the ALU output. Table 5 defines the various logic
operations that the Am2901 can perform, and Table 6 shows the arithmetic functions of the
device. Both carry-in LOW (C, = 0) and carry-in HIGH (C, = 1) are defined in these
operations.

Logic Functions for G, P, Cp+4, and OVR

The four signals, G, P, Cy+4, and OVR are designed to indicate carry and overflow conditions
when the Am2901 is in the add or subtract mode. Table 7 indicates the logic equations for
these four signals for each of the eight ALU functions. The Il and S inputs are the two inputs
selected according to Table 1.

Table 4 Source Operand and ALU Function Matrix

Ootal I, 4, 4
ALLT apurce
Octal ALL 0 1 2 3 5] T
Tean | function AQ AR a, o, 8 0, A oA D, 0,0
C,=1 A-Q A+ B Q B A D+ A D+Q o
0 A plus 8 |
C,=H A+ Q4+ A+ B +1 @1 I B+1 A+ D+ A+ D+ 0+ o=1
C, =L 0 =A&=1 B-aAa-1 -1 B-1 A -1 A-D-1 a-D-1 =0 =1
1 = minus B
C,=H Q=4 B~ A o] B L] A-D a-n =D
C,=L A-0-1 A—-B-1 -1 —-B -1 - -1 O-A=1 OD=>0=1 D=1
2 A minus &
C,=H A-D A-B -Q -B A O-a D-qQ o]
3 RORS Ay Q Ay B [+] B A DA oowa [+]
4 A AND S A SO ASB 1] L] 0 DMA o o]
5 AAND S AAQ AAB o 8 A oA b A0]
G A EX-OR 8 Al - Q B A DA O o
7 AENNORS | Awd Ao B a] 3 T=h B 5
+ o= Phg; = = Minug; = OR, 5 = ARD,; 5= = EX-0R

Tabde § ALL Logic Mode Funclions: [C,
Irrelevant)
Chotad
[I Eraags Frmctian
E Ay D
4 1 & 5B
4 & ARD O ol
£ & (R
a3 a Ay D
3 1 Aoy B
aF B R 0w A
36 [
& O ' A
B 1 Az H
8 & EX-OF Do A
8 & O o O
T o - ad [
T o1 A< B
T 5 ExX-OR m
T 8 D0
7o o
- E
T 4 IMVERT =
T T [w]
& 2 o
g 3 B
i 4 PASS A
8 7 o
a 2 o
3 3 B
3 & FPAES A
a v]
4 =2 o
4 & i . &
4 4 ZERD o
4 7 1]
5 O L =
5 1 A B
5 5 PSS o~ A
5 & om0

Pin Definitions

Aos

Bo-3

lo-

Os,
RAM;

Oo,
RAMg

Do-3

OE

P,G

The four address inputs to the register stack used to select one register whose contents are displayed through the A port.

The four address inputs to the register stack used to select one register whose contents are displayed through the B port and
into which new data can be written when the clock goes LOW.

The nine instruction control lines to the Am2901, used to determine what data sources will be applied to the ALU (lg12), what
functions the ALU will perform (5 45), and what data is to be deposited in the Q register or the register stack (lg 7 g).

A shift line at the MSB of the Q register (Qs) and the RAMg3 register stack (RAM3). Electrically these lines are three-state
outputs connected to TTL inputs internal to the Am2901. When the destination code on lg 7 g indicates an up shift (octal 6 or
7), the three-state outputs are enabled and the MSB of the Q register is available on the Qs pin and the MSB of the ALU
output is available on the RAM3; pin. Otherwise, the three-state outputs are OFF (high-impedance) and the pins are electrically
LS-TTL inputs. When the destination code calls for a down shift, the pins are used as the data inputs to the MSB of the Q
register (octal 4) and RAM (octal 4 or 5).

Shift lines like Q3 and RAMg, but at the LSB of the Q register and RAM. These pins are tied to the Q3 and RAM; pins of the
adjacent device to transfer data between devices for up and down shifts of the Q register and ALU data.

Direct data inputs. A 4-bit data field which may be selected as one of the ALU data sources for entering data into the Am2901.
Dy is the LSB.

The four data outputs of the Am2901. These are three-state output lines. When enabled, they display either the four outputs of
the ALU or the data on the A port of the register stack, as determined by the destination code lg 7.

Output enable. When OE is HIGH, the Y outputs are OFF; when OE is LOW, the Y outputs are active (HIGH or LOW).

The carry generate and propagate outputs of the Am2901's ALU. These signals are used with the Am2902 for carry-
lookahead. See Table 7 for the logic equations.

OVR Overflow. This pin is logically the Exclusive-OR of the carry-in and carry-out of the MSB of the ALU. At the most significant
end of the word, this pin indicates that the result of an arithmetic 2's complement operation has overflowed into the sign bit.
See Table 7 for logic equation.

F=0 Thisisan open-collector output which goes HIGH (OFF) if the four ALU outputs Fo-zare all LOW. In positive logic, it
indicates the result of an ALU operation is 0.

Ch The carry-in to the Am2901's ALU.

Cnsa The carry-out of the Am2901's ALU. See Table 7 for equations.

CP The clock to the Am2901. The Q register and register stack outputs change on the clock LOW-to-

Table 8 ALU Arithmelic Mode Functions
O, o= O (LOw) C,=1(HIGH)

Oetal —_— .

P ™ Group Function Group Function
[A=D AsQ+1
01 ADD A+ B ADD plus A-B+1
o5 O+ a one D+ A+1
0o & D+ 4 D+3+1

ooz o Qs+
o 3 PASS B Increment B+
o 4 A A+
o7] D+1
1 2 Q-1 o
1 3 Derament B-1 PASS B
1 4 A= A
27 0D-1 5}
2 2 Q-1 -2
2 3 15 complament -B-1 g complament B
2 4 —A -1 (nagate) —A
1 7 o-1 -b
10 Q-a-1 Q- A
11 Subtract B-aA-1 Subtract B - A
1 & (1'% complarnant) A=-D=-1 {2's complemenit) A-D
1 6 o-D-1 o-D
20 &—-0-1 A -0Q
21 &—-8B-1 A-B
2 8 D=A=1 D= A
-] oD-0-1 D=0

Table 7

Digfinitions (+ = OR}

Fo=Fy+ 5, G, = RSy Ga = Gy + PG, = PG, + PPPG, + BRPPPC,

P, =R, + 8, G, = RS, 0, = O, + PG, + PPG, + PPPG,

P:=HR;+ 5 G = RS

Fy=H,+ 8, G, = RS,

Taan Functon T ' Casa OVER
o R+% FFFF, Gy + PG, +PPG, + FPFG, <. Gy G
i §-R [+——————— Same as A + 5 equations, but substitute T, for R, in definitions ——
2 R-5 |~ samess A+ 5 equations, but substitute 5, for 5, in datinitions
5 RS Low PPPP, PP P, + G, FF#F,+ G,
T | Ris Low E1G. 166 G+ Gt G+ G+ G, Gut Git G+ Gty
[RAS Low e Barnea g8 R A S equations, but substitute A for A, in definitions
B R Sarne as A 1y S, but substitute 7, far A, in definitions —

, | @_ira, - PRa, -
7 R 5 Gy + G+ Gy Gy | B+ PYG+ PPG, + PPPG [See note
: : o | @erorpa e, | DEERER |

Hate: [Fy + &P, + BGF, + B850« P, + GF, + GEF, + BEAF, + GEGEL)

HIGH transition. The clock LOW time is internally the write enable to the 16 x 4
RAM which comprises the "master” latches of the register stack. While the clock is
LOW, the "slave" latches on the RAM outputs are closed, storing the data previously
on the RAM outputs. This allows synchronous master-slave operation of the register
stack.

Expansion of The Am2901

Any number of Am2901's can be interconnected to form CPU's of 12, 16, 24, 36, or more
bits, in 4-bit increments. Figure 4 illustrates the interconnection of three Am2901's to form a
12-hit CPU, using ripple carry. Figure 5 illustrates a 16-bit CPU using carry lookahead, and
Fig. 6 is the general carry lookahead scheme for long words.

With the exception of the carry interconnection, all expansion schemes are the same. The Qs
and RAMg; pins are bidirectional left/right shift lines at the MSB of the device. For all devices
except the most significant, these lines are connected to the Qo and RAM pins of the adjacent
more significant device. These connections allow the Q registers of all Am290 I's to be shifted
left or right as a contiguous n-bit register, and also allow the ALU output data to be shifted

left or right as a contiguous n-bit word prior to storage in the RAM. At the LSB and MSB of
the CPU, the shift pins should be connected to three-state multiplexers which can be
controlled by the microcode to select the appropriate input signals to the shift inputs. (See Fig.
7)

The open-collector F = 0 outputs of all the Am2901's are connected together and to a pull-up
resistor. This line will go HIGH if and only if the output of the ALU contains all zeros. Most
systems will use this line as the Z (zero) bit of the processor status word.

The overflow and F's pins are generally used only at the most significant end of the array, and
are meaningful only when 2's complement signed arithmetic is used. The overflow pin is the
Exclusive-OR of the carry-in and carry-out of the sign bit (MSB). It will go HIGH when the
result of an arithmetic operation is a number requiring more bits than are available, causing
the sign bit to be erroneous. This is the overflow (V) bit of the processor status word. The Fg
pin is the MSB of the ALU output. It is the sign of the result in 2's complement notation, and
should be used as the negative (N) bit of the processor status word.

The carry-out from the most significant Am2901 (Cy.4 pin) is the carry-out from the array,
and is used as the carry (C) bit of the processor status word.

Carry interconnections between devices may use either ripple carry or carry lookahead. For
ripple carry, the carry-out (C,.4) of each device is connected to the carry-in (C,) of the next
more significant device. Carry lookahead uses the Am2901 lookahead carry generator. The
scheme is identical with that used with the 74181/74182. Figures 5 and 6 illustrate single- and
multiple-level lookahead.

Shift 1/0O Lines at the End of the Array

The Q-register and RAM left/right shift data transfers occur between devices over
bidirectional lines. At the ends of the array, three-state multiplexers are used to select what
the new inputs to the registers should be during shifting. Figure 7 shows two Am25L.S253
dual four-input multiplexers connected to provide four shift modes. Instruction bit 17 (from
the Am290l) is used to select whether the left-shift multiplexer or the right-shift multiplexer is
active. (See Table 8.) The four shift modes in this example are:

Zero A LOW is shifted into the MSB of the RAM on a down shift. If the Q register is
also shifted then a LOW is deposited in the Q-register MSB. If the RAM or both
registers are shifted up LOWSs are placed in the LSBs.

One Same as zero but a HIGH level is deposited in the LSB or MSB.
Rotate A single-precision rotate. The RAM MSB shifts into the LSB on a right shift and

the LSB shifts into the MSB on a left shift. The Q register if shifted, will rotate in
the same manner.

Bp oy L] Ba-in
o o o iy I o y o L e g
RRm, A —] HAy, Bty Ll L LM Ak M, f— AAE D
CARRY 8 —— G . [. Lo L [fas Gasd f—— &
S — oA — e — Y
— L v,
= . B 5 . hi i . el i
|
*a-a -‘ J.'_: _l l:%. '
¢ s Yon

T
SONTAS,

Fig, 4. Three Am280's used to construct 12-bit CPU with ripple carry. Correspanding A, B, and 1 pins on all devices are connected
togathar.

L
i B B 3 Din - By i
1§ | T T T

| [

. ——

|
|
|
|
|

rp—
dee PVRE
el
Lo Curg Tuta
| | Cai
L merw Tatig]

Fig. 6. Carry lookahead scheme for 48-bit CPU using 12 Am2901°s. The carry-out fiag (C48) should be laken from the
lowvesr Am2902 rather than the rght-most Am2801 for higher speed.

5 gy
5
L |:| Lam bal
moE E
T oA B i e B
wa v —]—u
H——{1 Y - !'.i' = =
S 55 ke | " 8EE
| f—{wcn B3 = oA i <2 1
[lice 838 oo Forri I ey e A
= R S
23 =

!

TR BITE

I i
e

Fig. 7. Three-stale Multipleers-used on shill 11D lines.

Arithmetic A double-length arithmetic shift if Q is also shifted. On an up shift a zero
is loaded into the Q-register LSB and the Q-register MSB is loaded into the RAM
LSB. On a down shift, the RAM LSB is loaded into the Q-register MSB and the ALU
output MSB (F,, the sign bit) is loaded into the RAM MSB. (This same bit will also be
in the next less significant RAM bit.)

Hardware Multiplication

Figure 8 illustrates the interconnections for a hardware multiplication using the Am2901. The
system shown uses two devices for 8 x 8 multiplication, but the expansion to more bits is
simple- the significant connections are at the LSB and MSB only.

The basic technique used is the "add and shift" algorithm. One clock cycle is required for each
bit of the multiplier. On each cycle, the LSB of the multiplier is examined; if it is a 1, then the
multiplicand is added to the partial product to generate a new partial product. The partial
product is then shifted one place toward the LSB, and the multiplier is also shifted one place
toward the LSB. The old LSB of the multiplier is discarded. The cycle is then repeated on the
new LSB of the multiplier available at Q.

The multiplier is in the Am2901 Q register. The multiplicand is in one of the registers in the
register stack, R,. The product will be developed in another of the registers in the stack, Ry.

The A address inputs are used to address the multiplicand in R,, and the B address inputs are
used to address the partial product in R,. On each cycle, R, is conditionally added to Ry,
depending on the LSB of Q as read from the Qo output, and both the Q and the ALU output
are shifted left one place. The instruction lines to the Am2901 on every cycle will be:

ls 76 = 4 (shift register stack input and Q register left)

|5,4,3 =0 (Add)

l,10=1o0r3 (select A, B or O, B as ALU sources)
Figure 8 shows the connections for multiplication. The circled numbers refer to the
paragraphs below.

1 The adjacent pins of the Q register and RAM shifters are connected together

so that the Q registers of both (or all) Am2901's shift left or right as a unit.
Similarly, the entire

Table 8
Code Source of new data Type
I7 St S Qo Qn RAM RAM, Shift
H L L 0 Qn1 0 Fn-1 Zero
One
H L H 1 Qm 1 Fo Rotate
Arithmetic

H H L Qn Qn-l I:n Fn-l Up (nght)

H 0 Qn-l Qn I:n-l

L Q 0 Fi 0 Zero
One
H Q1 1 =5 1 Down (Left) Rotate
Arithmetic
L Qi Qo F1 Fo
H Q1 Fo F1 RAM, = RAM,.1 =
Fn
L & g
[i3 o
} sos] =
ccccc d aF [4\.

Fig. 8, Interconnection for dedicated muMiplication (8 by 8 bit)
(corresponding A, B, and | connecied together).

8-bit (or more) ALU output can be shifted as a unit prior to storage in the
register stack.

2 The shift output at the LSB of the Q register determines whether the ALU
source operands will be A and B (add multiplicand to partial product) or 0 and
B (add nothing to partial product). Instruction bit I, can select between A,. B or
0, B as the source operands; it can be driven directly from the complement of
the LSB of the multiplier.

3 As the new partial product appears at the input to the register stack, it is
shifted left by the RAM shifter. The new LSB of the partial product, which is
complete and will not be affected by future operations, is available on the
RAMg pin. This signal is returned to the MSB of the Q register. On each cycle
then, the just-completed LSB of the product is deposited in the MSB of the Q
register; the Q register fills with the least significant half of the product.

4 As the ALU output is shifted down on each cycle, the sign bit of the new
partial product should be inserted in the RAM MSB shift input. The F;flag
will be the correct sign of the partial product unless overflow has occurred. If
over-flow occurs during an addition or subtraction, the OVR flag will go
HIGH and F3is not the sign of the result. The sign of the result must then be
the complement of F3. The correct sign bit to shift into the MSB of the partial
product is therefore F3 @OVR; that is, F3 if overflow has not occurred and F if
overflow has occurred. On the last cycle, when the MSB of the multiplier is
examined, a conditional subtraction rather than addition should be performed,
because the sign bit of the multiplier carries negative rather than positive
arithmetic weight.

Y=Y 2 + Y2+ L+ Y20

This scheme will produce a correct 2's complement product for all
multiplicands and multipliers in 2's complement notation.

Figure 9 is a table showing the input states of the Am2901's for each step of a signed 2's
complement multiplication.

Am2909 Microprogram Sequencer
General Description

The Am2909 is a 4-bit-wide address controller intended for sequencing through a series of
microinstructions contained in a ROM or PROM. Two Am2909's may be interconnected to
generate an 8-bit address (256 words), and three may be used to generate a 12-bit address
(4096 words). Figure 10 is a block diagram of the Am2909.

The Am2909 can select an address from any of four sources. They are: (1) a set of external

direct inputs (D); (2) external data from the R inputs, stored in an internal register; (3) a 4-
word-deep

Initial Ragtives Eratei AmIB0N Micracoes Firal Magane Saces
[[
0 Multipher | Lssd i Comp. Margly 0 Whlipliar |
Sl | e e L1} wieglicang
HHE BTG 15 7. LaH Poogac |
2. D By | 21 LSH Proguey |
3% e T — ez 30 MEH Product
T T -)
8, F—= | o | Deseription | Pobegailll ———1— T Ll Iﬁ:u: l e
| | A | B |tevg|tses] lzw | g, | 0 oy ity | mamy | Ta | |
ova o Mo miipier=a | 'HERERE 2 | w|x " | = 1
OnE | B | Cesny w3 |z |4| a3 |x|x| = " x |
DBl = it Ve
Bl B | Cosw Ade & San 1 a] o N er) n | LT P - Fro Vi
{B =02 e i | 3 | a1 1 1ard | =
gy | B | Gt Subn g .m_. | yers| ! RAM, Fyw OV R
0wd | B | Sese LSH Proa 1 Ry £ BN | F] 2 ¥ | % w ® «
I ke I
o cC 5 * Spource ¥ 3 o [53 Dmarmaron

Fig. 8

push/pop stack; or (4) a program counter register (which usually contains the last address plus
one). The push/pop stack includes certain control lines so that it can efficiently execute nested
subroutine linkages. Each of the four outputs can be ORed with an external input for
conditional skip or branch instructions, and a separate line forces the outputs to all zeros. The
outputs are three-state.

Architecture of the Am2909

A detailed logic diagram is shown in Fig. 11. The device contains a four-input multiplexer
that is used to select either the address register, direct inputs, microprogram counter, or file as

the source of the next microinstruction address. This multiplexer is con trolled by the Sy and
S1 inputs.

The address register consists of four D-type, edge-triggered flip-flops with a common clock
enable. When the address register enable is LOW, new data is entered into the register on the
clock LOW-to-HIGH transition. The address register is available at the multiplexer as a

source for the next microinstruction address. The direct input is a 4-bit field of inputs to the
multiplexer and can be selected as the next microinstruction address.

The Am2909 contains a microprogram counter (u PC) that is composed of a 4-bit incrementer
followed by a 4-bit register. The incrementer has carry-in (C,) and carry-out (Cp+4) such that
cascading to larger word lengths is straightforward. The u PC can be used in either of two
ways. When the least significant carry-in to the increment is HIGH, the microprogram register
is loaded on the next clock cycle with the current Y output word plus one (Y + 1 — p PC).
Thus sequential microinstructions can be executed. If this least significant Cy is LOW, the
incrementer passes the Y output word unmodified and the micro program register is loaded
with the same Y word on the next cycle (Y — u PC). Thus, the same microinstruction can be
executed any number of times by using the least significant C, as the control.

MICROPROGARAM SEQUENCER
BLOCK DIAGRAM

Fig. 10, Microprogram sequencer black diagram.

The last source available at the multiplexer input is the 4 x 4 file (stack). The file is used to
provide return address linkage when executing microsubroutines. The file contains a built-in
stack pointer (SP) which always points to the last file word written. This allows stack
reference operations (looping) to be performed without a push or pop.

The stack pointer operates as an up/down counter with separate push/pop and file enable
inputs. When the file enable input is LOW and the push/pop input is HIGH, the PUSH
operation is enabled. This causes the stack pointer to increment and the file to be written with
the required return linkage-the next microinstruction address following the subroutine jump
which initiated the PUSH.

If the file enable input is LOW and the push/pop control is LOW, a POP operation occurs.
This implies the usage of the return linkage during this cycle and thus a return from
subroutine. The next LOW-to-HIGH clock transition causes the stack pointer to decrement. If
the file enable is HIGH, no action is taken by the stack pointer regardless of any other input.

The stack pointer linkage is such that any combination of pushes, pops, and stack references
can be achieved. One microinstruction subroutines can be performed. Since the stack is 4
words deep, up to four microsubroutines can be nested.

The ZERO input is used to force the four outputs to the binary zero state. When the ZERO
input is LOW, all Y outputs are LOW regardless of any other inputs (except OE). Each Y
output bit also has a separate OR input such that a conditional logic 1 can be forced at each Y
output. This allows jumping to different microinstructions on programmed conditions.

The Am2909 features three-state Y outputs. These can be particularly useful in military
designs requiring external ground support equipment (GSE) to provide automatic checkout of
the microprocessor. The internal control can be placed in the high-impedance state, and
preprogrammed sequences of micro instructions can be executed via external access to the

control ROM/PROM.

Definition of Terms

A set of symbols is used to represent various internal and external registers and signals used

with the Am2909. Since its principal

L - Ao I
L. PoB T

" 1L
b= ERAMNE HARLE L F ;".?‘.'.PEE:I..
|
L B, " o
Ej | o)
e |] [l
Euien = Lo | :
- : = I[) :
& = g ER g pe
e r:_ 1 3 1 | 1
I — — P = e QEIE N N
‘-Ft,» I_r_uj } JI im A 1] __1_ | 1_
= i | [? | ——1 “ - rm_!_“!nu

|
B .

]

Ly

Figaec Ay eid D) connsctid fogesher on A#7281 1 and R vamove,

Fig. 11. Microprogram sequencer biock diagram.

application is as a controller for a microprogram store, it is necessary to define some signals
associated with the microcode itself. Figure 12 illustrates the basic interconnection of

Am2909, memory, and microinstruction register. The definitions here apply to this
architecture.

Inputs to Am2909

S1, So Control lines for address source selection.

FE, PUP Control lines for push/pop stack.

RE Enable line for internal address register.

OR; Logic OR inputs on each address output line.

ZERO Logic AND input on the output lines.

OE Output enable. When OE is HIGH, the Y outputs are OFF (high impedance).
Ch Carry-in to the incrementer.

Ri Inputs to the internal address register.

Di Direct inputs to the multiplexer.

CpP Clock input to the AR and p PC register and push-pop stack.

Outputs from the Am2909

Yi Address outputs from Am2909 (address inputs to control memory).

Cha Carry-out from the incrementer.

Internal Signals

uPC Contents of the microprogram counter.

REG Contents of the register.

STKO-STK3 Contents of the push/pop stack. By definition, the word in the 4 x4 file addressed by the
stack pointer is STKO. Conceptually data is pushed into the stack at STKO; a subsequent
push moves STKO to STK1; a pop implies STK3 —» STK2 — STK1 — STKO.
Physically, only the stack pointer changes when a push or pop is performed. The data
does not move. 1/0 occurs at STKO.

SP Contents of the stack pointer.

External to the Am2909

A Address to the control memory.

I(A) Instruction in control memory at address A.

1 Contents of the microword register (at output of control memory). The microword register
WR contains the instruction currently being executed.

Th Time period (cycle) n.

Operation of the Am2909

Figure 13 lists the select codes for the multiplexer. The two bits applied from the microword
register (and additional combinational logic for branching) determine which data source
contains the

[

U]
—] L
A=
T
— =" fiy. iy TE mor, FF
—] -
-
CONTEGL W
AL PO
Y

0

soaugsoe | vou WROWTRD
Ey COKT R HRANTIN
nnnnn | FIELEE =)

=TT e
B I —

Fig, 12. Microprogram sequencer control,

address for the next microinstruction. The contents of the selected source will appear on the Y
outputs. Figure 13 also shows the truth table for the output control and for the control of the
push/pop stack. Table 9 shows in detail the effect of Sy, S;, FE, and PUP on the Am29009.
These four signals define what address appears on the Y outputs and what the state of all the
internal registers will be following the clock LOW-to-HIGH edge. In this illustration, the

microprogram counter is assumed to contain initially some word J, the address register some
word K, and the four words in the push/pop stack R, through Rg.

Figure 14 illustrates the execution of a subroutine using the Am2909. The configuration of
Fig. 11 is assumed. The instruction being executed at any given time is the one contained in
the microword register (« WR). The contents of the u WR also control (indirectly, perhaps)
the four signals Sy, S1, FE, and PUP. The starting address of the subroutine is applied to the D
inputs of the Am2909 at the appropriate time.

In the columns on the left is the sequence of microinstructions to be executed. At address J +
2, the sequence control portion of the microinstruction contains the command "Jump to
subroutine at A." At the time T, this is in the p WR, and the Am2909 inputs are set up to
execute the jJump and save the return address. The subroutine address A is applied to the D
inputs from the u WR and appears on the Y outputs. The first instruction of the subroutine,
I(A), is accessed and is at the inputs of the u WR. On the next clock transition, I1(A) is loaded
into the u WR for execution, and the return address J + 3 is pushed onto the stack. The return
instruction is executed at Ts.

Mddress Selection Dwiput Control
OcTAL |8, 5| SOURCE FOR ¥ QUTPUTS | symBeoL ok ZEROD DOE A
i L L Micronrogran Courrdir #PC X X H Z
] L H Fegister REG = L L L
| 2 H L Push-Pop stack 5TEQ H H L H
1 3 H H DHried inpurs o L H L Source selechad by S5 5
L I

Synchronous Steck Coninal

FE FLWP FUSHPOP STACK CHANGE]

H 4 Mo ghange

L H Ineramsng skgck porbr, then
H = High push event PC ome STED |
L= Lowe L L Pop stack ddecrement sack porier)
= Dan't Cam

Fig. 13

Table 9 Output and Internal Next-Cycle Register States for Am2909

Cycle
N

N+1

N +1

N+1

N+1

N+1

S1, So, FE, PUP

0000

4PC REG

J

J+1

J+1

J+1

K+1

K+1

K+1

Ra+1

A X X X X X X X X

A X X X X

STKO

Ra

Rb
Ra

J
Ra

Ra
Ra

Rb

Ra

J
Ra

Ra
Ra

Rb

STKI

Rb

Rc
Rb

Ra
Rb

Rb
Rb

Rc
Rb

Ra

Rb

Rb
Rb

Rc

STK2 STK3
Rc Rd
Rd Ra
Rc Rd
Rb Rc
Rc Rd
Rc Rd
Rc Rd
Rd Ra
Rc Rd
Rb Rc
Rc Rd
Rc Rd
Rc Rd
Rd Rc

Yourt

J

Ra

Comment

Pop stack

Push u PC

Continue

Pop stack;

Use AR for address

Push p PC;

Jump to address in AR

Jump to address in AR

Jump to address in STKO;

Pop stack

Principal use

End
loop

Setup
loop

Continue

End

loop

JSR AR

JMP AR

RTS

N+1

N+1

N +1

N +1

N

N +1

X =Don't care, 0 = LOW, 1 = HIGH, Assume C, = HIGH

Note: STKO is the location addressed by the stack pointer.

D+1

D+1

J

D+1

K

Ra

J

Ra

Ra

Ra

Rb

Ra

J
Ra

Ra

Rb

Ra

Rb

Rb

Rb

Rc
Rb

Ra

Rb

Rb

Rc

Rb

Rc

Rc

Rc

Rd

Rc

Rb

Rc

Rc

Rd

Ra

Rd

Rd

Rd

Ra
Rd

Rc

Rd

Rd

Ra

Jump to address in STKO;

Push u PC

Jump to address in STKO

Pop stack;

Jump to address on D

Jump to address on D

Push u PC

Jump to address on D

Stack ref
(loop)

End
loop

JSRD

JMP D

CONTROL MEMOR Y
[= Ewweune Dyl T T Ty | Ty Ta Tg Ta T T | Ty
. : e il gt
e i pipipgimimi |

-1 i Amzom | Gi.%g| O o 3 o o 7] [
T J - Inguss FE H H L H H L H H
T, e B srom | pup ¥ M " ® i | L ¥ ®
T 3 ERA HWAl o ® u a | ox X x ® E
Ts J43 - -
Tr did = [T Y 5 I I - T % B - R B U T
= = i STED - - - J=3 Jid dvX = =
riseitul
- - ETHA . - = - - - - -
ik T bl = x g i = z
- 5TKD - | - -
Ty ey 15Ak Am I A i,
L4 vy 45 Fol ¥ O) +1 42 | 13 | aea |)
T a2 ATS P o]]
5 guepur | Y1 | NN [JBRA LAY (V0ATH] RTE | 1630 (1081] I
= | Contents | |
= - of pWR |
= -ilnmumun| WA 14 Wty | JSRA [NAL | HAST) | RTE | dcdad) | idbea)
- - - peing |
= = b |]
S L,y = HIGH
Fig. 14, Subroutine execulion,

APPENDIX 1 AM2904 ISP DESCRIPTION

AHFIDR oo
tegie

1 LEFS amgription o ARD MIBH bit alice microprapres 1eqeesier.

Ld B wded whLi 184 SRIGUT miCro@EroosEROr

1 Skl gt lan wlaae is pasa i aut emietion of wep
! compuksr oyl alval LB G dedd ion we ja il mitk
tlbe R deair
480 SLanetd

TR e apesLliOn t AICrapaqran courtar

[T H A Afdrany regisker

3 ! Stach painlar
Brawe weglager Tila

1:3E1T

= Catarral Siate®*
e bmoridl,

LR

r taputs
poskink 1lag
gEntrel i
Tors out canwral 1ies

"t lmalemaafalion. ¥

lecrid :ak I Intremaniar

sacra @ o0 |TT0, § lsgh ‘epmdrecs comitant

A Bit atdce |anpEedddle Le 2%F BITE) QPR COSGrORTER

“sngarsl ban.Cycle® {ua]

i3 ! Imiliglezdiinn

8 = FE = O:

LIS R = T4
T | Wakic operation §oom
e

oG RREL | Pul sul zebactied addrids

W met IE =7 | Feifgem Bnp S3ACL aperalien

Dipap = |5F = 8F -]
“Tupnih 8 (AP BF e 1
SIACE[5] = uFC)
e
e raxk
0 oep HED - A Lokd regletec oF ennkled

Fi = [n m#it

=13 1 lacremest goc
HSERAT rum
wred

sk
S4hderunn Sonrce Sa Facih see ™ [ui]

LI
i
e ¥ = ufC = "OME.
L0 110 T o ke
“18 & NECONE 5 =)

segin
TED ot T oa gfLoE e g GE,
loos 7 o G r HG e OR,,
Sl oie F ow gl s EIM'E"LI:"' m,.
1L e T =Pl : BoOF
v

#e
el

il | dag of AMIE0Y fercription

e

APFENDIX 2 AMZ901 ISP DESCRIPTION

' !

t1%PS dercriplion af tas AW 991 & Bidoallce aigreprecriser,

Fiir 1 camiatan the decteration of 811 sgSual asd Implamast il fan

warfabl
Eanic “'|I.rl:1.i|| ':jl'lt A8 Lbw wourcE wnd
CAEULEE iy
|-'|l!m=l.|l:ll RRIEt b pracel .
ECALAINE FRulidgs Lhal wbd 1o camputetvae of lh-i CR-Pp gEserakn
TBh. evarfios [0W2), a¢ carry propagals (Fj.

L,

#=F, SLaLane
ACl:0o, Foinpety oo ALK

1
L3:00, |
FER zo MLMBIED, P Suipal Tram Alg
[LS EEEN | Gatpmit from 0 regiuter

MR ELgkgt s
EOIE B & Rt f pork el

& MEM para baces
E REm parq Pakch

& BA pory fapat sddeacn

A WM pore gt addven

Wirect dabe inpete

Duta oaffalg

Bubpul arabie h-’luuh camtral)

canlpe
@ #AAFL dnputieulgsn
J|-||- e T anill arputioutast

S anteact iae Farmg s

LELH N I IAstruckion 1apets
SrigE:ir I Soiris aperans {inld
apikigs I r iFagn,

!

[LEEY
Lo LERH 19 FEBED, o AREFEEE Tinld

e implasentad lon, Ve lablay®

Allied gy, P ALY ¢ gdrrp oubpul
el By, 1 lemporary Tee gasargting o
mace g e |'NIILY B Trignaie conatmnt

=®Lantrucs lan, CpE 16 unh

IH"".(M"I] H I

|;| ﬂﬂl-l'lql.l: = Cndl = @
Fokoel dga

LBt

" Hile spatraciiss cpgly
lhl":TI] vk

g,

TEACCHEN . DO e

acurce is

Zawrce caloelalion

Bugrn

JTﬁrﬂl = Pk
B_LATLH = Fa|
a

LA

dmatiantien s
Bagin
DILMOE daag =b
g in

I Destinatios cabgulalion

) NI
" ey 5Y; R[] = F
wa . fmy ettt
e B [] " AN @ F W g0 = [N W)
" A OEET RN
o " mt-irm:q:l:-nlw:‘.
L) "“]ﬂlml%'rlml
wrd
v,
*rlasbraciize, Dagcut ios = e]

L

-
LR R T 1a8+35

= [ER &= 5] "“1“.: RCLIT) B
- R S

AL un M_pc i
Irieat By er 5] a n.-éql] Ak

- CENRERS[CAGL By, Sh:

AUBGER 3or ALECER)

LI 1 E-§
(R @0 a0l &) nqr-n TLETFE
pooampateld, feet 31):

l-l.urua s BLUCE: :.

ar & I Wors
Fo=;
€ = [(R ar 5] #q0 “a11L
Eas = diw :ryﬂ e g L7
P e AL = B oand 5 THam 5
Foa
4 = ne 5] -qH-uE fIRCO) ramt
Cpd = at G
Thoos (AL = L h :

A180E O) wed 51 eql{us) “0002) amat

¥ = [anL @] ar Cal,
xar & | ®oaar 5

Cidaed Wy ane &) repdus E S TH

Bl o, (-Wul.ll;llu ni, §n

cRTircL &, A);

-c:n:mt A, St

_|1|.:' i!::.] ""':!"; Lo R

UlrlTll i
el mor

FEGRE = [F aew "L000)

ard,

P Mg s

&

" Sarvice, FagiFibes **u)
d-cmpubair. L300, BRI e
Bagin

Goddmmube = [[{r, and B0 and (IR, DA 8, 0d:L3)
el L R TS T T 1Y
aed [CLEABIF, aF u.3CERY]
agl{sa] '0OdE]

.

:B?[r -::| O5, §, €3:00]00 cm ?

| Carry Tof OF B &
304 agglea} TORE]

wnd @, o

ll-r---ul.n:ur ar &3 eat{ua® CRIILY ang %1-_...u E.
i rd [§r P=at Lej)
wad,

LLLUT DS ELERE S B3 LR P Dwarfige Tar OF 8 aed 3
bagin

:' Loar 3. ER) nasy
TR

&af cha
ar §,)08 g [ctsmpd) T" gl

b Fa f BHPERRL deacriphien

The Am2903/2910"
General Description of the Am2903

The Am2903 is a 4-bit expandable bipolar microprocessor slice. The Am2903 performs all
functions performed by the industry standard Am2901A and, in addition, provides a number
of significant enhancements that are especially useful in arithmetic- oriented processors.
Infinitely expandable memory and three- port, three-address architecture are provided by the
Am2903. In addition to its complete arithmetic and logic instruction set, the Am2903
provides a special set of instructions which facilitate the implementation of multiplication,
division, normalization, and other previously time-consuming operations. The Am2903 is
supplied in a 48-pin dual in-line package.

Architecture of the Am2903

The Am2903 is a high-performance cascadable 4-bit bipolar microprocessor slice designed
for use in CPU's, peripheral controllers, microprogrammable machines, and numerous other
applications. The 9-bit microinstruction selects the ALU sources, function, and destination.
The Am2903 is cascadable with full lookahead or ripple carry, has three-state outputs, and
provides various ALU status flag outputs. Advanced low-power Schottky processing is used
to fabricate this 48-pin LSI circuit.

All data paths within the device are 4 bits wide. As shown in Fig. 1, the device consists of a
16-word by 4-bit two-port RAM with latches on both output ports, a high-performance ALU
and shifter, a multi-purpose Q register with shifter input, and a 9-bit instruction decoder.

Two-Port RAM

Any two RAM words addressed at the A and B address ports can be read simultaneously at
the respective RAM A and B output ports. Identical data appears at the two output ports when
the same address is applied to both address ports. The latches at the RAM output ports are
transparent when the clock input, CP, is HIGH, and they hold the RAM output data when CP
is LOW. Under control of the OEg three-state output enable, RAM data can be read directly at
the Am2903 DB /0 port.

External data at the Am2903 Y 1/O port can be written directly into the RAM, or ALU shifter
output data can be enabled onto the Y 1/O port and entered into the RAM. Data is written into
the RAM at the B address when the write enable input, WE, is LOW and the clock input, CP,
is LOW.

Arithmetic Logic Unit

The Am2903 high-performance ALU can perform seven arithmetic and nine logic operations
on two 4-bit operands. Multiplexers at the ALU inputs provide the capability to select various
pairs of ALU source operands. The Ea input selects either the DA external data input or RAM
output port A for use as one ALU operand, and the OEg and |y inputs select RAM output port

B, DB external data input, or the Q-register content for use as the second ALU operand. Also,

during some ALU operations, zeros are forced at the ALU operand inputs. Thus, the Am2903
ALU can operate on data from two external sources, from an internal and external source, or
from two internal sources. Table 1 shows all possible pairs of ALU source operands as a
function of the Ea, OEg, and Iy inputs.

When instruction bits Ig4, I3, I2, 11, and 1o are LOW, the Am2903 executes special functions.
Table 4 defines these special functions and the operation which the ALU performs for each.
When the 2903 executes instructions other than the nine special functions, the ALU operation
is determined by instruction bits I4, 13, I, and 1;. Table 2 defines the ALU operation as a
function of these four instruction bits.

Am2903's may be cascaded in either a ripple carry or lookahead carry fashion. When a
number of Am2903's are cascaded, each slice must be programmed to be a most significant
slice (MSS), intermediate slice (IS), or least significant slice (LSS) of the array. The carry
generate, G, and carry propagate, P, signals required for a lookahead carry scheme are
generated by the Am2903 and are available as outputs of the least significant and intermediate
slices.

The Am2903 also generates a carry-out signal, Cn+4, Which is generally available as an output
of each slice. Both the carry-in, C,, and carry-out, C,.4, signals are active HIGH. The ALL
generates two other status outputs. These are negative, N, and overflow, OVR. The N output
is generally the most significant (sign) bit of the ALU output and can be used to determine
positive or negative results. The OVR output indicates that the arithmetic operation being
performed exceeds the available 2's complement number range. The N and OVR signals are
available as outputs of the most significant slice. Thus the multi-purpose G/N and P /OVR
outputs indicate G and P at the least significant and intermediate slices, and sign and overflow
at the most significant slice. To some extent, the meanings of the Cy.4, P /OVR, and G/N
signals vary with the ALL function being performed. Refer to Table 5 for an exact definition
of these four signals as a function of the Am2903 instruction.

Abstracted from "Am2903, The Superslice" and "Am2910 Microprogram Controller"
specification sheets, Advanced Micro Devices, Inc., 1978.

BLOCK DIAGRAM

1

OisTa I

i
r &
fa-a ADDAESS

e —
A DD ESS Bo-3

naw WRATE e
TMARLE i

Y B
" DaTE GuT OATA DUT
T ;
CPoe—md B LATOH LATCH E fme— CP
L
als 1
2 o
— I
Dag 4 [A A
R - l li
Fa == 8 Wk WMUN 5 R iy
Ll

AN S Bnoa v R
Fove) ALy L ez,
Caed 2 \\\ Fa -3

4 £ 59y
ELL =]
sioy B2 sweTed [T [| swFTER £ iy
A /1’1
oy B3
: a
P =— a
o o . REGISTER
"
17 - — _— @
L]
P R VL S

-
&= isTALCTION | * ¥o.3
LECGOE FEAQ
WRITE WSS -
-

1 3 —

—— Ve
3& -_— Gkn

Fig. 1. Blogk diagram.

1 ALU Operand Sources

‘En lo "OEg ALUoperandR ALU operand S

L L L
L L H
L H X
H L L
H L H
H H X

RAM output A RAM output B
RAM output A DBo.3

RAM output A Q Register

DAo-3 RAM output B
DAg3 DBi3
DAy3 Q Register

L =LOW H =HIGH X = don't care

Table

ALU Shifter

Under instruction control, the ALU shifter passes the ALU output (F) non-shifted, shifts it up
one bit position (2F), or shifts it down one bit position (F/2). Both arithmetic and logical shift
operations are possible. An arithmetic shift operation shifts data around the most significant
(sign) bit position of the most significant slice, and a logical shift operation shifts data through
this bit position (see Fig. 2). SIO, and SIO;3 are bidirectional serial shift inputs/outputs.

During a shift-up operation, SIOg is generally a serial shift input

Table 2 ALU Functions

~
w
N

L L L L O

L=LOW H=HIGH i=0t0 3

1 Hexcode ALU functions

lo=H Fi= HIGH
lo=L Special
functions

F = S Minus R Minus 1 Plus C,
F = R Minus S Minus 1 Plus C,
F =R Plus S Plus C,

F =S Plus C,

F ="SPlus C,

F =R Plus C,

F="RPlus C,

Fi= LOW

Fi=Ri AND S;

Fi = Rij Exclusive-NOR S;

Fi = Ri Exclusive-OR S;

Fi= RiAND S;

Fi=RiNOR S;

Fi= RiNAND S;

Fi=RiOR S;

Bl]
= LU | COMIAAE

durin qupecinl functiona ©, D and E, F. Reder 1o Table 5.

i Tha vign compare sigrul sppears at the 2 outped o the maoat dgnificant sl

Fig, 2

and S10; a serial shift output. During a shift down operation, SIO3 is generally a serial shift
input and SIOg a serial shift output.

To some extent, the meaning of the SIO, and S103 signals is instruction-dependent. Refer to
Tables 3 and 4 for an exact definition of these pins.

The ALU shifter also provides the capability to sign-extend at slice boundaries. Under
instruction control, the SIOy (sign) input can be extended through Yo, Y1, Y2, and Yz and
propagated to the SIO; output.

A cascadable 5-bit parity generator/checker is designed into the Am2903 ALU shifter and
provides ALU error detection capability. Parity for the Fo, F1, F2, and F3 ALU outputs and
SIO; input is generated and, under instruction control, is made available at the SIO, output.

The instruction inputs determine the ALU shifter operation. Table 4 defines the special
functions and the operation the ALU shifter performs for each. When the Am2903 executes
instructions other than the nine special functions, the ALU shifter operation is determined by
instruction bits Igl7lgls. Table 3 defines the ALU shifter operation as a function of these four
bits.

Q Register

The Q register is an auxiliary 4-bit register. It is intended primarily for use in multiplication
and division operations; however, it can also be used as an accumulator or holding register for
some applications. The ALU output, F, can be loaded into the Q register, and/or the Q register
can be selected as the source for the ALU S operand. The shifter at the input to the Q register
provides the capability to shift the Q-register contents up one bit position (2Q) or down one
bit position (Q/2). Only logical shifts are performed. QIO, and Q103 are bidirectional shift
serial inputs/outputs. During a Q-register shift-up operation, QIOq is a serial shift input and
QIOg is a serial shift output. During a shift-down operation, QIOg is a serial shift input and
QIOy is a serial shift output.

Double-length arithmetic and logical shifting capability is provided by the Am2903. The
double-length shift is performed by connection QIO3 of the most significant slice to SIO of
the least significant slice, and executing an instruction which shifts both the ALU output and
the Q register.

The Q register and shifter are controlled by the instruction inputs. Table 4 defines the
Am2903 special functions and the operations which the Q register and shifter perform for
each. When the Am2903 executes instructions other than the nine special functions, the Q
register and shifter operation is controlled by instruction bits Igl;lgls. Table 3 defines the Q
register and shifter operation as a function of these four bits.

Output Buffers

The DB and Y ports are bidirectional 1/O ports driven by three-state output buffers with
external output enable controls. The Y output buffers are enabled when the "OEy input is
LOW and are in the high-impedance state when "OEy is HIGH. Likewise, the DB output
buffers are enabled when the "OEg is LOW and in the high-impedance state when "OEg is
HIGH.

The zero, Z, pin is an open-collector input/output that can be wired ORed between slices. As
an output it can be used as a zero detect status flag and generally indicates that the Yg.3 pins
are all LOW, whether they are driven from the Y output buffers or from an external source
connected to the Yo.3 pins. To some extent the meaning of this signal varies with the
instruction being performed. Refer to Table 5 for an exact definition of this signal as a
function of the Am2903 instruction.

Instruction Decoder

The Instruction Decoder generates required internal control signals as a function of the nine
instruction inputs, lo.g; the Instruction Enable input, IEN the LSS input; and the WRITE/ MSS
input/output.

The WRITE output is LOW when an instruction which writes data into the RAM is being

executed. Refer to Tables 3 and 4 for a definition of the WRITE output as a function of the
Am2903 instruction inputs.

When IEN is HIGH, the WRITE output is forced HIGH and the Q register and Sign Compare
Flip-Flop contents are preserved.

When IEN is LOW, the WRITE output is enabled and the Q register and Sign Compare Flip-
Flop can be written according to the Am2903 instruction. The Sign Compare Flip-Flop is an
on-chip flip-flop which is used during an Am2903 divide operation (see Fig. 3).
Programming the Am2903 Slice Position

Tying the LSS input LOW programs the slice to operate as a least significant slice (LSS) and
enables the WRITE output signal onto the WRITE/MSS bidirectional 1/0 pin. When LSS is
tied HIGH, the WRITE/MSS pin becomes an input pin. Tying the WRITE/ MSS pin HIGH
programs the slice to operate as an intermediate slice (IS), and tying it LOW programs the
slice to operate as a most significant slice (MSS).

Am2903 Special Functions

The Am2903 provides nine special functions which facilitate the implementation of the
following operations:

« Single- and double-length normalization
e 2's complement division

o Conversion between 2's complement and sign magnitude representation

e Incrementation by 1 or 2
Table 4 defines these special functions.

The single-length and double-length normalization functions can be used to adjust a single-
precision or double-precision floating-point number in order to bring its mantissa within a
specified range.

Three special functions which can be used to perform a 2's complement, non-restoring divide
operation are provided by the Am2903. These functions provide both single- and double-
precision divide operations and can be performed in n clock cycles, where n is the number of
bits in the quotient.

The unsigned multiply special function and the two 2's complement multiply special functions
can be used to multiply two n-bit unsigned or 2's complement numbers in n clock cycles.
These functions utilize the conditional add and shift algorithm. During the last cycle of the 2's
complement multiplication, a conditional subtraction, rather than addition, is performed
because the sign bit of the multiplier carries negative weight.

The sign/magnitude-2's complement special function can be used to convert number
representation systems. A number expressed in sign/magnitude representation can be
converted to the 2's complement representation, and vice-versa, in one clock cycle.

The increment by 1 and increment by 2 special functions can be used to increment an
unsigned or 2's complement number by 1 or

2. This is useful in 16-bit-word, byte-addressable machines, where the word addresses are
multiples of 2.

Pin Definitions

Aoz Four RAM address inputs which contain the ad dress of the RAM word appearing at the
RAM A output port.

Bos Four RAM address inputs which contain the ad dress of the RAM word appearing at the
RAM B

Table 3 ALU Destination Control for Iy OR I;OR I, OR I3 OR I, HIGH, IEN = LOW

S|03 YS

Is Iz le Is Hex ALU shifter function Most Other Most sig. Other
code sig. slice slices slice slices

L L L L O Arith. F/12 - Y Input Input Fs SIO;

L L L H 1 Log. Fl2 Y Input Input SIO; SIO;

L L
L H
L H
L H
L H
H L
H L
H L
H L
H H
H H
H H
H H

H L 2 Arith. FI2 > Y Input Input Fs SIO;
H H 3 Log.Fl2 > Y Input Input SIO; SIO;
L L 4 FsY Input Input Fs Fs
L H 5 F—>Y Input Input Fs Fs
H L 6 F—>Y Input Input Fs Fs
H H 7 FsY Input Input Fs Fs
L L 8 Arith.2F— Y F2 Fs Fs F2
L H 9 Log.2F— Y Fs Fs F F2
H L A Arith.2F— Y F2 Fs Fs F2
H H B Log.2F— Y Fs Fs F2 F2
L L C F>Y Fs Fs Fs Fs
L H D F>Y F3 Fs F3 Fs
H L E SI0p— Yo, Y1, Y2, Y3 SIOg SO SIOg SI0g
H H F F>Y Fs Fs F3 Fs

Parity =RV FVFVY FY S|03
Vv = Exclusive OR

WE

DAo-3

EA

DBo.3

output port and into which new data is written when the WE input and the CP input are
LOW

The RAM write enable input. If WE is LOW, data at the Y 1/O port is written into the
RAM when the CP input is LOW. When WE is HIGH, writing data into the RAM is
inhibited.

A 4-Dbit external data input which can be selected as one of the Am2903 ALU operand
sources; DAy is the least significant bit.

A control input which, when HIGH, selects DAg.3 and, when LOW, selects RAM
output A as the ALU R operand.

A 4-bit external data input/output. Under control of the OEB input, RAM output port B
can be directly read on these lines, or input data on these lines can be selected as the
ALU S operand.

OEg

Cn

lo-s

IEN

Cn+4

GI/N

A control input which, when LOW, enables RAM output B onto the DBy.3 lines and,
when HIGH, disables the RAM output B tri-state buffers.

The carry-in input to the Am2903 ALU.
The nine instruction inputs used to select the Am2903 operation to be performed.

The Instruction enable input which, when LOW, enables the WRITE output and allows
the Q register and the Sign Compare Flip-Flop to be written. When IEN is HIGH, the
WRITE output is forced HIGH and the Q register and Sign Compare Flip-Flop are in
the hold mode.

This output generally indicates the carry-out of the Am2903 ALU. Refer to Table 5 for
an exact definition of this pin.

A multi-purpose pin which indicates the carry generate, G, function at the least
significant and intermediate slices, and generally indicates the sign, N, of the ALU
result at the most significant slice. Refer to Table 5 for an exact definition of this pin.

P /OVR A multi-purpose pin which indicates the carry

Most
sig.
slice

SI103
Fs

SIO;

Fs

)

)
)

F1
F1

F1

Y1 Yo S10¢ Write Q Reg. & shifter QIO3 QIOg

function

Other

slices

F3 Fz F1 Fo L Hold Hi-Z Hi-Z
Fs F, Fq Fo L Hold Hi-Z Hi-Z
Fs F2 Fi Fo L Log.Q/2 > Q Input Qo
Fs F2 F1 Fo L Log.Q/2 - Q Input Qo
F, Fq Fo Parity L Hold Hi-Z Hi-Z
F2 F1 Fo Parity — H Log. Q/2 »Q Input Qo
F, Fi Fo Parity H F>Q Hi-Z Hi-Z
F, Fy Fo Parity L F— Q Hi-Z Hi-Z
F1 Fo SIOg Input L Hold Hi-Z Hi-Z
Fq Fo SIOp Input L Hold Hi-Z Hi-Z

F1 Fo SIOp Input L Log.2Q - Q Qs Input

F1 F1
) F,
) F.
SI10g SIO0g
) F,
L=LOW
H = HIGH

Fo SIOp Input L Log.2Q > Q Qs Input

F1 Fo Hi-Z H Hold Hi-Z Hi-Z
F1 Fo Hi-Z H Log.2Q > Q Qs Input
SIOy SIOp Input L Hold Hi-Z Hi-Z
F1 Fo Hi-Z L Hold Hi-Z Hi-Z

Hi-Z = high-impedance

SIO, SIO;3

QI10y, QIO;

LSS

WRITE/MSS

Yo-3

propagate, P, function at the least significant and intermediate slices, and
indicates the conventional 2's complement overflow, OVR, signal at the most
significant slice. Refer to Table 5 for an exact definition of this pin.

An open-collector input/output pin which, when HIGH, generally indicates
the Yo.3 outputs are all LOW. For some special functions, Z is used as an input
pin. Refer to Table 5 for an exact definition of this pin.

Bidirectional serial shift inputs/outputs for the ALU shifter. During a shift-up
operation, SIOq is an input and SIO3 an output. During a shift-down operation,
SIOsis an input and SIOq is an output. Refer to Tables 3 and 4 for an exact
definition of these pins.

Bidirectional serial shift inputs/outputs for the Q shifter which operate like
SIO and SI0s. Refer to Tables 3 and 4 for an exact definition of these pins.

An input pin which, when tied LOW, programs the chip to act as the least
significant slice (LSS) of an Am2903 array and enables the WRITE output
onto the WRITE/MSS pin. When LSS is tied HIGH, the chip is programmed
to operate as either an intermediate or most significant slice and the WRITE
output buffer is disabled.

When LSS is tied LOW, the WRITE output signal appears at this pin; the
WRITE signal is LOW when an instruction which writes data into the RAM is
being executed. When LSS is tied HIGH,WRITE/MSS is an input pin; tying it
HIGH programs the chip to operate as an intermediate slice (I1S) and tying it
LOW programs the chip to operate as the most significant slice (MSS).

Four data inputs/outputs of the Am2903. Under control of the OEy input, the
ALU shifter output data can be enabled onto these lines, or these lines can be

used as data inputs when external data is written directly into the RAM.

Tabde 4
I
L ke S 0 Aeg. &
Hex | Speial ALL! shifter Mot sig. | Oitfar shdfter
Lo I, I, Iy | code | fenclioo ALEY funetion function aficn sffven | 51, | function oroy | e, | WHRITE
FeS+G,dZ=lL Log F2—+ 1)
Lol L % |0 | uesignedMumiply | CgeliooirzaH | {Neted) HrZ input | Fy Lig. QiZ-—= @ | Inpat | O, L
Tom's Gomplamort | FoB-C.f1Z=L | Loa.FR—=Y |
L oL oH x|l | FoRiSLCHZ-H | Mo Hi-Z npat | Fe Log @2 =0 | Inpan | O L
T Tirceemartby | g
L H L L |4 g e Twa F=S+1+0C, F—Y Irgut Irgriat Panty | FHakd Hi-£ Hi-Z L
L i Elg.nma_m'ruu FuS :;_:.-12 L F—¥ N z
L H L HIls Twa's Camplsment E-F+GiZ=H Hce Inpi InpA Farity | Hold Hi=Z Hi L
o “Two's Complement | E= St G IMZ=L Log Fla— s
L H H X |BT Multiply, Cortagtion | FeS-R-1+CHZ=-H | (M3 Hi-Z Input F: Log. @R —@ | Inpul | O L
| Singhe Langth e %
WL LR RS e F=5+C, Foey L Fy HI-Z Log-20—G [@, Input L
B Doubiie Langin
H L H % |AD Harmaliza and F=5+0C, Lo, 2F -+ ¥ Py Fy Fa Enput Log. 80 ==0Q iy Irgauin L
Firg: Divida Op.
R Eh f Tura Complomant | F=S+ R« G iIZ=L WA) . o]
HoOH LR GE | pa Fog_ R-ieCEZ=H Log. 2F =¥ | HasFy Fa Inpet | Log. 330 [&y Inpust L
- Twos Complomend | F=8+ 8+ Gl Z=L =
H W H % | EF Diwidha, Cormecton F=8-R-1+G,HZ=H | F=Y¥ Fa F, -7 Log. 20— 0 oy Inpud L
pnil Fgmadnder |
MOTES 1. AL the mos signibcant slee anky, the G, sgnal b issemelly gebed 5o ®a ¥y airpat L o= LO4N Hi-E = high impadance
o A mon sigrificent dics sely, Fya OVA is mtemally gaind io e ¥, ozt H o= HiEH = Enclushin OR

B4t raosd pigriticnnt wiics only, B; 42 F, i5 panerales &l ihe ¥, aulpst

¥ = dantears Parity = S0 Far Py FieFe

Tabile 5

T
e Fovn Ew | | F
ex] (Haz) o B " fiat | Tuterme —’_
Wddy LLGL 5, | =td T =t 3 Con -h::f i iy :: " ﬂrm ::mg' leieromeiite | Laiet g, =
= - w 1o - = e J i wtieg
¥ 1 % [RAg Ave |8 -Pc.__u e BT B]§ | %R GRGL ¥
T O T Bk o RS I SR T T A
R S X S T oy el N 7 I
- u ! WM, BIKEEE ¥t T,
" 3 x -I]__ s‘ Y K _""E‘?‘j T’:?fr:‘f: ?|?.';|'r?,
N | a VH:, : i Ll S
X 3 ¥ |o A 5] JP«:;_ :] b _ﬂ?l?.?, -
¥ A O L O '-' P-:;: - o, . T B
Fl ¥ x| N o B R
: - TR - . . I LA CAAA
=, | Bh VA, | YAAF
= " Z Hh‘s‘.__ = I e) L L LEY
T B X _H': 45 | A j:_ T : e - L UL LA
R £ |RAS ¥ T L s E 58 A
-1 [s (7.~
x o X |RAE 1 r oS LSS N e T W,
- - e : - JA). 4Rk] i | R, TR, YO,
X F 4 RS . | - % |In | B s TR YY A
_ @] T a 0 F T | Wy BEG AT
0.1 a L |erz-1 gitZ=L | . — iy F¥ T, YF
S AABHZ=H | AyBizen | 9vP | Cuipln. | F Fy [Irput irput o,)
3% o B ELEED SHZ-L I = 1. 1Tt
L B R f-_s.n'z =H | ByBirz-n | GVPE | Guawl,., | B F, G Inpust Inpug Q
4 o L | Ses Mot 1 G - B R = :
N L __:H:_:“? _ {OVPG |Gl [P (R g TAAN, TEAE, A,
3 [L |o po a Earz-L [| R R P
o WRE | G " 3 L g
o _ B E,HZ_M_“— |- o7 Coaa Fore BT = G 5, Input gl
. a Lo[orzaL B IPZ =L - = . 1T ——
AAgtzan | Brgaz-u | BvPG |Cuwd, | F ki & Irput Ingaat G, -
) o Ll w E Y T A 18 |oag
BT S (R) [o . W -3
T P T [A _ 2w F, F F. [B N
co 0 L | mAsmz=L | RyBaz-L B T i P st SoaNote s | SeeHaios
RASHZ=H | WAiz-H GwPD, | G,we F Fy g Sign Conpare Inpud)
P e P _ e EEt L e FF Qutput nput
o " L | RAsEEaL | RoysuzoL PR, SRS e o P et ——
[RAsiZ-n | Rysiz=n | BvPL [Cavo., [F Fa i ign Gompara |y i i
e nl_}sslg.Lm_u,,-g.,_mgLu-n | | FF Oupiit nput
WSS in HIGH, Gy y = B L=Low=pn
ONCEE b Lo P, = and P, = B,
#ES mHIGH, P, = 5, e
A A o et s geitcam gloe, G, = O, s
A alhar slioes, €, = G PC, =
4 A G
S e P-pRpp,
8= By GP, y GPP, 1 O 88,

Cosp = Gy o B, o @B, LY T

et
e
T Sy

[
[
aw
BmITHES Arhmenc Shitt Path

e
s

e

Am2003 Legicsl Shift Path

Fig. 3. Sign compare flip-fop.

OEy A control input which, when LOW, enables the ALU shifter output data onto the Yo.3
lines and, when HIGH, disables the Y3 three state output buffers.

SP The clock input to the Am2903. The Q Register and Sign Compare Flip- Flop are
clocked on the LOW- to- HIGH transition of the CP signal. When enabled by WE,

data is written in the RAM when CP is LOW.

Using the Am2903
Am2903 Applications

The Am2903 is designed to be used in microprogrammed systems. Figure 4 illustrates a
recommended architecture. The control and data inputs to the Am2903 normally will all come
from registers clocked at the same time as the Am2903. The register inputs come from a
ROM or PROM-the "microprogram store." This memory contains sequences of
microinstructions which apply the proper control signals to the Am2903's and other circuits to
execute the desired operation.

The address lines of the microprogram store are driven from the Am2910 Microprogram
Sequencer. This device has facilities for storing an address, incrementing an address, jumping
to any address, and linking subroutines. The Am2910 is controlled by some of the bits coming
from the microprogram store. Essentially, these bits are the "next instruction™ control.

Note that with the microprogram register in between the microprogram memory store and the
Am2903's, a microinstruction accessed on one cycle is executed on the next cycle. As one
microinstruction is executed, the next microinstruction is being read from microprogram
memory. In this configuration, system speed is improved because the execution time in the
Am2903's occurs in parallel with the access time of the microprogram store. Without the
"pipeline register,"” these two functions must occur serially.

1 One Level Pipeline Based S_vne-m
s

‘ — [T S]
1 At [HER =1

e |I

Fig. 4. Typical microprogram architecture.

Expansion of the Am2903

The Am2903 is a 4-bit CPU slice. Any number of Am2903's can be interconnected to form
CPUr's of 8, 16, 32, or more bits, in 4-bit increments. Figure 5 illustrates the interconnection of
four Am2903's to form a 16-bit CPU, using ripple carry.

With the exception of the carry interconnection, all expansion schemes are the same. The
QI0O3 and SIO3 pins are bidirectional left/right shift lines at the MSB of the device. For all
devices except the most significant, these lines are connected to the Q1O and SIOg pins of the

adjacent more significant device. These connections allow the Q registers of all Am2903's to
be shifted left or right as a contiguous n-bit register, and also allow the ALU output data to be
shifted left or right as a contiguous n-bit word prior to storage in the RAM. At the LSB and
MSB of the CPU, the shift pins should be connected to a shift multiplexer which can be
controlled by the microcode to select the appropriate input signals to the shift inputs.

Device 1 has been defined as the least significant slice (LSS) and its LSS pin has accordingly
been grounded. The Write/Most Significant Slice (WRITE/MSS) pin of device | is now
defined as being the Write output, which may now be used to drive the write enable (We)
signal common to the four devices. Devices 2 and 3 are designated as intermediate slices and
hence the LSS and WRITE/MSS pins are tied HIGH. Device 4 is designated the

g
BEVICE 4 Divics x DEvKE 3 i
I g DEMICE |
e sk b b f b
LU D& Dk LT L DB
-] [o— . 4, =1 LT S — T 10— LT S
I — ity sy sk N e — | 11 1 - m:
Gammy 5 : =
CARRY ef g s v - L f— Jr, €y frmee Gannmy
HEGATA e oo i 2008 L PR 1 "
OVESFLOW e ug LT —+ e i
W W o —
A
o I [e s e —]z iw — 7 = z =)
3 =1
. m . | L= |
T o] T 70
i | | l
: = |
l—-= l
.- R,)

Fig. 5. 1&-bit CPU with ripple carry.

most significant slice (MSS) with the LSS pin tied HIGH and the WRITE/MSS pin held
LOW. The open-collector, bidirectional Z pins are tied together for detecting zero or for inter-
chip communication for some special instruction. The carry-out (Cp+4) IS connected to the
carry-in (C,) of the next chip in the case of ripple carry. For a faster carry scheme, an
AM2902 may be employed (as shown in Fig. 6) so that the G and P outputs of the Am2903
are connected to the appropriate G and P inputs of the Am2902, while the Cy.x, Ch+y and Chps,
outputs of the Am2902 are connected to the C,, input of the appropriate Am2903. Note that
G /N and P /OVR pin functions are device-dependent. The most significant slice outputs N
and OVR while all other slices output G and P.

The IEN pin of the Am2903 allows the option of conditional instruction execution. If IEN is

LOW, all internal clocking is enabled, allowing the latches, RAM, and Q register to function,
if IEN is HIGH, the RAM and Q register are disabled. The RAM is controlled by IEN if WE
is connected to the WRITE output.

It would be appropriate at this point to mention that the Am2903 may be microcoded to work
in either two- or three address architecture modes. The two-address modes allow A + B — B
while the three-address mode makes possible A + B — C.

uuuuu

LLLLLL

it
i
12
—]
" ad
Ll
1|
L
a=if
=il
g
o5

Fig. &, 16-bit CPU with carry look ahead.

Implementation of a three-address architecture is made possible by varying the timing of LEN
in relationship to the external clock and changing the B address. This technique is discussed
in more detail under Memory Expansion.

Parity

The Am2903 computes parity on a chosen word when the instruction bits Is.g have the values
of 4,6 to 716 as shown in Table 3. The computed parity is the result of the Exclusive-OR of the
individual ALU outputs and SIO3. Parity output is found on S1O,. Parity between devices may
be cascaded by the interconnection of the SIO, and S103 ports of the devices as shown in Fig.
6. The equation for the parity output at the SIOg port of device 1 is given by SIOg= Fi5 V Fy4
VFi3V...VFiyFoV SIOss.

Sign Extend

Sign extend across any number of Am2903 devices can be done in one microcycle. Referring
again to the table of instructions (Table 3), the sign extend instruction (Hex instruction E) on
Is.g causes the sign present at the S1O, port of a device to be extended across the device and
appear at the S103 port and at the Y outputs. If the least significant bit of the instruction (bit
Is) is HIGH, Hex instruction F is present on Is.g, commanding a shifter pass instruction. At
this time, F; of the ALU is present on the SIO5 output pin. It is then possible to control the
extension of the sign across chip boundaries by controlling the state of Is when lg.g are HIGH.
Figure 7 outlines the Am2903 in sign extend mode. With ls_g held HIGH, the individual chip
sign extend is controlled by Isap. If, for example, Isa and Isg are HIGH while Isc and Isp are
LOW, the signal present at the boundaries of devices 2 and 3 (F3 of device 2) will be extended
across devices 3 and 4 at the SIO; pin of device 4. The outputs of the four devices will be
available at their respective Y data ports. The next positive edge of the clock will load the Y
outputs into the address selected by the B port. Hence, the results of the sign extension are
stored in the RAM.

Special Functions

When lp4 = 0, the Am2903 is in the special function mode. In this mode, both the source and
destination are controlled by Is.g. The special functions are in essence special

microinstructions that are used to reduce the number of microcycles needed to execute certain
functions in the Am2903.

Normalization, Single- and Double-Length

Normalization is used as a means of referencing a number to a fixed radix point.
Normalization strips out all leading sign bits such that the two bits immediately adjacent to
the radix point are of opposite polarity.

Normalization is commonly used in such operations as fixed-to- floating point conversion and
division. The Am2903 provides for normalization by using the Single-Length and Double-
Length Normalize commands. Figure Sa represents the Q register of a 16-bit processor which
contains a positive number. When the Single-Length Normalize command is applied, each
positive edge of the clock will cause the bits to shift toward the most significant bit (bit 15) of
the Q register. Zeros are shifted in via the QIO, port. When the bits on either side of the radix
point (bits 14 and 15) are of opposite value, the number is considered to be normalized, as
shown in Fig. 8b. The event of normalization is externally indicated by a HIGH level on the
Chn+4 pin of the most significant slice (Cn+s MSS = Q3 MSS V Q; MSS).

There are also provisions made for a normalization indication via the OVR pin one
microcycle before the same indication is

R sy AR g g P9 g f 0N

LLE b

L R L N I S I

:fa:ul[-|-_1-- |:~.|||
|

R3]

CEVICE 1

LEVICE & DEVICE 3 CEVICE 2

a)|r

O REGATES [.—
i
HER

al Unnormalized Positive Mumber,

RATH X

otz p3 1FfIT W 4 AT 6 & d|ld3 F ovoo

01000808 00000000

S
|

bl Mormalized Positive Mumbsar .

Fig. B

available on the Cp+4pin (OVR = Q2 MSS V Q1 MSS). This is for use in applications that
require a stage of register buffering of the normalization indication.

Since a number consisting of all zeros is not considered for normalization, the Am2903
indicates when such a condition arises. If the Q register is zero and the Single-Length

Normalization command is given, a HIGH level will be present on the Z line. The sign output,
N, indicates the sign of the number stored in the Q register, Q3 MSS. An unnormalized
negative number (Fig. 9a) is normalized in the same manner as a positive number. The results
of single-length normalization are shown in Fig. 9b. The device interconnection for single-
length normalization is

AADIE
W ufiw o oe|sow oy oala s i

i ok o i o ow afr o8 433 For oa
. - T T T | %
amasren [[\ T o] o] "H'I" |—r—| weecmren [[s]sa]a]a |2 |o]]elelalo]alel
] | [|]

[|

=

iy]
nEvitia YT] BESILE § Dlvai

al Unsormalized Mogotive Singls Lemgih Mosnber. o) recamanzed Negative Single Length Bumber,

Fig. 9

outlined in Fig. 10. During single-length normalization, the number of shifts performed to
achieve normalization can be counted and stored in one of the working registers. This can be
achieved by forcing a HIGH at the C,, input of the least significant slice, since during this
special function the ALU performs the function [B] + C,, and the result is stored in B.

Normalizing a double-length word can be done with the Double-Length Normalize command,
which assumes that a user-selected RAM register contains the most significant portion of the
word to be normalized while the Q register holds the least significant half (Fig. 11). The
device interconnection for double- length normalization is shown in Fig. 12. The Cp.4, OVR,
N, and Z outputs of the most significant slice perform the same functions in double-length
normalization as they did in single-length normalization except that Cnr,, OVR, and N are
derived from the output of the ALU of the most significant slice in the case of double- length
normalization, instead of the Q register of the most significant slice as in single-length
normalization. A high-level Z line in double-length normalization reveals that the outputs of
the ALU and Q register are both zero, hence indicating that the double-length word is zero.

When double-length normalization is being performed, shift counting is done either with an
extra microcycle or with an external counter.

Sign/Magnitude-2's Complement Conversion

As part of the special instruction set, the Am2903 can convert between 2's complement and
sign/magnitude representations. Figure 13 illustrates the interconnection needed for sign/mag-

Dy WEE =— Sauy
Gpvl M vl it | | aepm

vy m—

el o “ d xn .
r ¢! Wiy .y uoy 5
fgaBqaead, - %

Fig. 1. Single-length normalize.

S Ll e

&

o M OEoR A

U e) LR IR
wwmarn [TTTTTTLTTLITTITF
LLlI ! |

p i inaaasannnnnngg

Fig. 11, Double-length word,

nitude-2's complement conversion. The C,, input of device 1 is connected to the Z pin. The
sign bit (S3 MSS) is brought out on the Z line and informs the other ALU's whether the
conversion is being performed on a negative or a positive number. If the number attempted to
be converted is the most negative number in 2's complement [i.e., 100 . . . 00(-2", an overflow
indication will occur. This is because -2" is 1 greater than any number that can be represented
in sign magnitude notation and hence an attempted conversion to sign magnitude from -2"
will cause an overflow. When minus zero in sign/magnitude notation (100 . . . 0) is converted
to 2's complement notation, the correct result is obtained (0 . . . 0).

Increment by 1 or 2

Incrementation by 1 or 2 is made possible by the special function of the same name. This
command is quite useful in the case of byte-addressable words. A word may be incremented
by 1 if C, is LOW or incremented by 2 if C,, is HIGH.

Unsigned Multiply

This special function allows for easy implementation of unsigned multiplication. Figure 14 is
the multiply flow chart. The algorithm dictates that initially the BAM word addressed by
address port B be zero, the multiplier be in the Q register, and the multiplicand be in the
register addressed by address port A. The initial conditions for the execution of the algorithm
are that (1) register Ry be reset to zero; (2) the multiplicand be in Ry and (3) the multiplier be
in R,. The first operation transfers the multiplier R, to the Q register. The Unsigned Multiply
(2's complement

Pejil e Lem a
0,85 = 5] = w0y gy ity iy 00 e &
am .

g £y
Byl Wl e DWFl i I ST ot

T . meeed H

— m, ey e i L i

Fig. 12. Dauble-langth normalize.

§lE
& . 105 0
vA e Ay Lt Ared] i, fe—
PP IE— 7 aly, [fr————] =it Siog,
My p Bl sioy i i Ty - L .l " =
i

Fig. 13. T's complement-saignmagnitude.

5y S —

STAAT

il ’e
Bhultiphoasd =0

Wuitipler in Ay

UGN LD
MULTHLY
DECREMENT CTR

EXD
Puubeit. (WSS 1= Ry
Frodect LS In 0

Muhiplcaad i Ry
wwmﬁ;

Fig. 14. 16x16 muliply flowchart,

multiply) instruction is then executed 16 (15) times. During the Multiply instruction, Ry is
addressed by RAM address port B and the multiplicand is addressed by RAM address port A.

When the Unsigned Multiply command is given, the Z pin of device 1 becomes an output
while the Z pins of the remaining devices are specified as inputs as shown in Fig. 15. The Z
output of device 1 is the same state as the least significant bit of the Q register during the
Unsigned Multiply instruction; therefore, the

Foifl ~CaAlnd
F=ikl - la] +Epezu Log Fid = ¥_ B F =0

CEVIGE 4 DEW T 3 DEvVIEE 3 BEVIGE 1

iy g ity Aty iy ity i -

iy aing

YR Az AmEE A Ao f, fa——

1]

¥ B sy ToLam

. Aty " Si0g p——

Ak, seny

"

| i

Mate: For unsigned multiphy, C, 4 4 M5S is intarnally shilted into positian W MSS; s complement multiply N¥OWVA
isinternalhy shified inte position Yj M5E

Fig. 15. Mutiply.

Z output of device 1 informs the ALU's of all the slices, via their Z pins, to output the sum of
the partial product (referenced by the B address port) plus the multiplicand (referenced by the
A address port) if Z = 1. If Z =0, the output of the ALU is simply the partial product
(referenced by the B address port). Since C,, is held LOW, it is not a factor in the
computation. Each positive-going edge of the clock will internally shift the ALU outputs
toward the least significant bit and simultaneously store the shifted results in the register
selected by the B address port, thus becoming the new partial sum. During the down-shifting
process, the C.4 generated in device 4 is internally shifted into the Y5 position of device 4. At
this time, one bit of the multiplier will down-shift out. of the Q1O ports of each device into
the QIO; port of the next least significant slice. The partial product is shifted down between
chips in a like manner, between the SIOq and S10; ports, with SIO, of device 1 being
connected to QIO; of device 4 for purposes of constructing a 32-bit-long register to hold the
32-bit product. At the finish of the 16 x 16 multiply, the most significant 16 bits of the
product will be found in the registers referenced by the B address lines while the least
significant 16 bits are stored in the Q register. Using a typical computer control unit (CCU),

as shown in Fig. 16, the unsigned multiply operation requires only two lines of microcode, as
shown in Fig. 17, and is executed in 17 microcycles.

2's Complement Multiplication

The algorithm for 2's complement multiplication is illustrated by Fig. 14. The initial
conditions for 2's complement multiplication are the same as for the unsigned multiply
operation. The 2's Complement Multiply command is applied for 15 clock cycles in the case
of 16 x 16 multiply. During the down-shifting process the term N-OVR generated in device 4
is internally shifted into the Y3 position of device 4. The data flow shown in Fig. 16 is

AACA IR TRLCTION

Al EEiM 2
1
7] .- COMTARL SYSTEM
warri | ' o L Lsls B | —n CONTROL
o l Lttt 5 REGGTEA [LT
17
L —e] e cr
i o
] e shcaAmM :l
i FOCT PR B
£ 2a

— Ll
—=] & Bhap] [T 5] TR
1 cr AT e
1 FIFTAIE
- = REGISTER | 42
1
7 cP OF

17

WICTOR | u
MAPFIRG

[ty

! B [
=] STATLES MUK Ay _}J
INTERALPT Dy @y O3 Gy Oy Oy Og Oy
Lt
Clg €y Op Oy Gy Oy Og
CLE o BiATUS RIC | =
i B i B Bl RATT ‘

BERERE

Fig. 16. Typical compuler canirel unit (CCUJ.

still valid. After 15 cycles, the sign bit of the multiplier is present at the Z output of device 1.
At this time, the user must place the 2's Complement Multiply Last Cycle command on the
instruction lines. The interconnection for this instruction is shown in Fig. 18. On the next
positive edge of the clock, the Am2903 will adjust the partial product, if the sign of the
multiplier is negative, by subtracting out the 2's complement representation of the
multiplicand. If the sign bit is positive, the partial product is not adjusted. At this point, 2's

complement multiplication is complete. Using a typical CCU, the 2's complement multiply
operation requires

Micro Drata

Memory Am2a10 Pipeline I

Address Inst Reg. g lg=ly la—ly OEB OEY Ay—Ap By—By Cq Comment .
[n | LDET [ooF (%] & | & | = x (™ X 0 |Load Counter B Ay —= O
Toei T APET | net |0 6 | @ |0 | 0] B A | 0| Unsigred Multigly |

Fig. 17. Microcode for unsigned 18x16 mulliply.

only three lines of microcode, as shown in Fig. 19, and is executed in 17 microcycles.

2's Complement Division

The division process is accomplished by using a four-quadrant non-restoring algorithm which
yields an algebraically correct answer such that the divisor times the quotient plus the
remainder equals the dividend. The algorithm works for both single-precision and multi-
precision divide operations. The only condi-

el ot

[T T Ead Tvl Loy B -¥.m .

L iy oy ey iy ol
.

e Ty iy iy oy

Hate W v DWR s el by shiftnd inin posison ¥y MSS

Fig. 18. 2's complement muliply, correction.

| Data £ & &
emory Am2ein Piesine TR E :-s- L
Addiria Inst Feg = 3 = = & u Cammee
.M | LoCT | ooy |XI8] 6 [H] X IRy[X[0 [Lesd Courter B R; v 0
| _m+1 | APGT [ner [o8] 2 u:-}'!'ri,lFu: 0 | £% Complernesa Multiply
= : - . ; : e
l I— ! !] ol L e e '“'lq' Z | wngipiny |Last Covedai)

Fig. 19, Microcode for 2's complement 1616 multiply.

tion that needs to be met is that the absolute magnitude of the divisor be greater than the
absolute magnitude of the dividend. For multi-precision divide operations the least significant
bit of the dividend is truncated. This is necessary if the answer is to be algebraically correct.
Bias correction is automatically provided by forcing the least significant bit of the quotient to
a 1, yet an algebraically correct answer is still maintained. Once the algorithm is completed,
the answer may be modified to meet the user's formal requirements, such as rounding off or
converting the remainder so that its sign is the same as the dividend's. These format
modifications are accomplished using the standard Am2903 instructions.

The true value of the remainder is equal to the value stored in the working register 2"* when n
is the number of quotient digits.

The following paragraphs describe a double-precision divide operation. The double-precision
flow chart is based upon the use of the architecture detailed in Fig. 18.

Referring to the flow chart outlined in Fig. 20, we begin the algorithm with the assumption
that the divisor is contained in Ry, while the most significant and least significant halves of
the dividend reside in Ry and Ry, respectively. The first step is to duplicate the divisor by
copying the contents of Ry into R3. Next the most significant half of the dividend is copied by
transferring the contents of R; into R, while simultaneously checking to ascertain if the divisor
(Ro) is zero. If the divisor is zero then division is aborted. If the divisor is not zero, the copy
of the most significant half of the dividend in R, is converted from its 2's complement to its
sign/magnitude representation. The divisor in R is converted in like manner in the next step,
while a test is done to see if the results of the dividend conversion yielded an indication on the
overflow pin of the Am2903. If the output of the overflow pin is a 1 then the dividend is -2"
and hence is the largest possible number, meaning that it cannot be less than the divisor. What
must be done in this case is to scale the dividend by down-shifting the upper and lower halves

stored in Ry and Ry respectively. After scaling, the routine requires that the algorithm be
reinitiated at the beginning.

Conversely, if the output of the overflow pin is not a 1, the sign magnitude representation of
the divisor (Rs3) is shifted up in the Am2903, removing the sign while at the same time testing
the results of 2's complement to sign/magnitude conversion of the divisor in the Am29 10. If
the results of the test indicate that the divisor is -2", i.e., overflow equals 1, then the lower half
of the dividend is placed in the Q register and division may proceed.

ETART
Chwirer in
Drasdard ﬁ}iﬂn
Derderd IL5 = Ny
]

2
Casatisa b O
Mamandsr i Ry

Fig. 20. Division flow char—double precislon divide.

This is possible because the divisor is now guaranteed to be greater than the dividend. If
overflow is not a 1 then we must proceed by shifting out the sign of the sign/magnitude
representation of the dividend stored in R,. At this point we are able to check whether the
divisor is greater than the dividend by subtracting the absolute value of the divisor (R3) from
the absolute value of the upper half of the dividend (R) and storing the results in Rs. Next,
the least significant half of the dividend is transferred from R4 to the Q register while
simultaneously the carry from the result of the divisor-dividend subtraction is tested. If the
carry (Cn+s) is 1, indicating the divisor is not greater than the dividend, then a scaling
operation must occur. This involves either shifting up the divisor or shifting down the

dividend. If the carry is not 1 then the divisor is greater than the dividend and division may
now begin.

The first divide operation is used to ascertain the sign bit of the quotient. The 2's Complement
Divide instruction is then executed 14 times in the case of a 16-bit divisor and a 32-bit
dividend. The final step is the 2's Complement Correction command, which adjusts the
quotient by allowing the least significant bit of the quotient to be set to a 1. At the end of the
division algorithm the 16-bit quotient is found in the Q register while the remainder now
replaces the most significant half of the dividend in R;. It should be noted that the remainder
must be shifted down 15 places to represent its true value. The interconnections for these
instructions are shown in Figs. 21, 22, 23. Using a typical CCU as shown in Fig. 15, the
double-precision divide operation requires only 11 lines of microcode, as shown in Fig. 24.

For those applications that require truncation instead of bias correction, the same algorithm as
above should be implemented except one additional 2's Complement Divide instruction
should be used in lieu of the 2's Complement Divide Correction and Remainder instruction.
However, this technique results in an invalid remainder.

It is possible to do multiple-precision divide operations beyond the double-precision divide
shown above. For example, to do a triple-precision divide for a 16-bit CPU, the upper two-
thirds of the dividend are stored in Ryand Q as in the case for double-precision divide. The
lower third of the dividend is stored in a scratch register, Rs. After checking that the
magnitude of the divisor is greater than the magnitude of the dividend, using the same tests as
defined in Fig. 20, the procedure is as follows:

1 Execute a Double-Length Normalize/First Divide Operation instruction.

2 Execute the 2's Complement Divide instruction 15 times.

3 Transfer the contents of Q, the most significant half of the quotient, to R.

4 Transfer Rsto Q.

5 Execute the 2's Complement Divide instruction 15 times.

EuE) Leg 2F =B -

oy v
okl aly iy iy iy Gy (=1 oy s
Py Py WSS et [,
Baw Py WL = IVA Gedeal Ara 20 Qe it am] Cp [0
Fy gy =————
ELe ® B & i H — e
IRy e g s 2] 3 iy a3 2] iy i L= By - My -

Fyos By Bge Byen dy %

Fig. 21. Doubde-length normalizefirst divide oparation.

Fell=|al Gyl Ee0 -
Pl - A —1eCgiE2=1 wag 2F -V 8 M-
Oy VS
Qialy GHy CiDy L= 1= [=2-1% Dy f——meef iy ity
——fCpa
— VR e G Comifny armm O,
NS
- — ES 5t 510 Hl fac e —
iF gy g % z e " z b i I o o ¥ i .
| sam coveaRs FE %
Fig. 22. ¥s complement divide.
o Bl - lAl rEq A E D
Esfa] - (&l =1rEanZ=1 F W@ @m-a
L iy any aky oy iy, sy sy fme— |
— ey
- L L) Arm3333 L el £
e
—_— 5 0 5, =, Silg p—-=—ouJum —
x * T ' -] o,
4
Sidia BlwPani Er %

Fig. 23. 2s complement divide cormection.

! “
Micra ke AmZE03 Am2822
Memory Am2370 Pipaline
Address Inst. Reg. |l lg—1y lg=lg EA Az-Ap B;-By C,|SEL POL Commant
n CONT ® 0] &6 a Jo] Fp Az | 0| %] X | 0] Rg— PR3 =)
ne TP | Abort (0| 6 | & ¢ By Fa | 0] 2 | 1 | ®| Ay Ry ifRg = 0 Abort
n+2 CONT x |of a 5 | X b Rz |0 X% | X | 0] 25CkSMIR}
z 2's C 1o 3M (Fia). #
n+3 ce e ol o | & |X X Ry | OJOVA| 1 |00 qur oy seole
n=4 P n+7 | D] 4 g | X ® Ay 0 [owA| 1 | & | Shitt out sign of divisar |
" nes | CONT X o] a | % |« X fy | 0| % | ® | % | Shift out sign of aivisar
n+b | COMT ® |o]| 2 F |a | PR Rz | 1| % | ® |0 Divigend- Divisor == F;
R0l
n+7 | cap E.Ef:.:!:ﬁ o) 6| &8 |0| R X | 0 [Cova| 0 | X | Chmy = 1, scals
Loop sat up &
f+8 PUSH 0004 | O 1] A] Ay Ry 4] g 1 X Firsl Divida O 3
Test Loog Count &
n+8 AFCT * of| o c |o J A Ry z x| x [x z-':c e '
n=A | CONT ¥ |ofle [E o] R Ry | 2| ® | X |*® |2sC Divide Correction

Fig, 24. Microcode for double precision divide.

6 Execute the 2's Complement Divide Correction and Remainder instruction.
The upper half of the quotient is then in Ry, the lower half of the quotient is in Q, and the
remainder is in R;. This technique can he expanded for any precision which is required.

Byte Swap

The multi-port architecture of the Am2903 allows for easy implementation of high- and low-
order byte swapping. Figure 25 outlines a byte-swap implementation utilizing two data ports.
Initially, the lower-order 8-bit byte is stored in devices 1 and 2 while the high-order byte is in
devices 3 and 4. When the user wishes to exchange the two bytes, the register location of the
desired word is placed on the B address port. When the byte-swap line is brought LOW, the
bytes to be swapped will he flowing from the DB ports of the Am2903 through the
Am25L.5240/244 three-state buffers. The outputs of the three-state buffers are permuted so
that the byte swap is achieved. The resultant permuted data is presented to the DA ports of the
Am2903, where it is reloaded into the memories of the Am2903 on the next positive edge of
CP using the permuted data source and function commands of F = A plus Cn(C, = 0) for the
Am25L.5240 or F = A plus C,(C,, = 0) for the Am25LS244 and the destination command F —
Y, B.

A higher-speed technique for achieving the byte-swap operation uses the Y input/output ports
with OEy held HIGH rather than the DA port inputs. This technique bypasses the ALU, thus
allowing faster operation. The Am2903 destination command F — Y, B should be used.

Memory Expansion

The Am2903 allows for a theoretically infinite memory expansion. Figure 26 pictures a 4-bit
slice of a system which has 48 words of RAM and 16 words of ROM. RAM storage is
provided by the Am2903 and the Am29705's. The 29705 RAM is functionally identical to the
Am2903 RAM. The Am29751 is used to store constants and masks and is addressable from
address port A only. The system is organized around five data buses. Inter-bus
communication may be done through the Am29705's or the Am2903. The memory addressing
scheme specifies the data source for the R input of the ALU emanating from the register
locations specified by address field A. Ag.zaddress 16 memory locations in each chip while
address bits A4.¢ are decoded and used

MES LES
DR WCE & oEVICE 3 OEVICE 2 OEVICE 7

A R0 Am0 e i)

DAg-3 Dilg_y = =] ®4-3 DBg.y =] %%a-3 BBs_ s Dog_y Dy_y
] Fada i {'s T }‘
BYTE

CRAD i AR TR F L ArmIea SRADVTE

—_—r)

Fig. 5. Byle swap.

for the output enable for the desired chip. The B address field is used both to select the S input
of the ALU and to specify the register location where the result of the ALU operation is to be
stored.

Bits Bo-3 are for source register addressing in each chip. Bits Bsand Bs are used for chip
output enable selection. Bg.g access the 16 destination addresses on each chip, while bits Big

and B1; control the Write Enable of the desired chip. The source and destination register
address are multplexed so that when the clock is HIGH, the source register address is
presented to the B address ports of the RAM's. The Instruction Enable (IEN) is HIGH at this
time. The data flows from the Y port or the internal B port, as selected by the decoder whose
inputs are By and Bs. When the clock goes LOW, the data emanating from the selected Y
outputs of the Am29705's and the RAM outputs of the Am2903 are latched and the
destination address is now selected for use by the HAM address lines. When the destination
address stabilizes on the address lines, the IEN pin is brought LOW. The WRITE output of
the Am2903 will now go LOW, enabling the decoder sourced by address bits Bipand B;;. The
selected decoder line will go LOW, allowing the desired memory location to be written into.
To switch between two- and three-address architecture, the user simply makes the source and
destination addresses the same, i.e., Bo.3 = Bg.g. FOr two-address architecture, the MUX is
removed from the circuit.

General Description of the Am2910

The Am2910 microprogram controller is an address sequencer intended for controlling the
sequence of execution of microinstructions stored in microprogram memory. Besides the
capability of sequential access, it provides conditional branching to any microinstruction
within its 4096-microword range. A last-in, first-out stack provides microsubroutine return
linkage and looping capability; there are five levels of nesting of microsubroutines.
Microinstruction loop-count control is provided with a count capacity of 4096.

During each microinstruction, the microprogram controller provides a 12-bit address from one
of four sources: (1) the microprogram address register (u PC), which usually contains an
address 1 greater than the previous address; (2) an external (direct) input (D); (3) a
register/counter (R) retaining data loaded during a previous microinstruction; or (4) a five-
deep last-in, first-out stack (F).

& ron

mET BusT R B & ous & XY pERT
DM
—t ay
gy
Oy
of e
AnpELL
]
Ao ¥
of van il
v v
b——od . "
L]
|
o
A g ®
Of st oen
Vi v
[} well %
A
a b |
Ia (]
Bk oo
- e
—f 1en T
aky g
[w B = J {0 +] [+] o o ©
w0]
DESOBER L} e pECOER TECODEn
i
Il - L. I P
e ot HHIRCE bEST Ly L=
by Ay A it - Bh el L L

Fig, 28. Expanded memary.

AmPl BLOCK DIAGARAM

=]

Q-

e D T
iy

Bt
- .

o p——
I

3 12BIT DATA PATH

== CONTROL PATH

=
iR

Fig. 27. Am2010 block diagram.

Architecture of the Am2910

The Am2910 is a bipolar microprogram controller intended for use in high-speed
microprocessor applications. It allows addressing of up to 4096 words of microprogram. A
block diagram of the Am2910 is shown in Fig. 27, and its application in a microcomputer is
depicted in Fig. 28.

The controller contains a four-input multiplexer that is used to select' either the
register/counter, direct input, microprogram counter, or stack as the source of the next
microinstruction address.

The register/counter consists of 12 D-type, edge-triggered flip-flops, with a common clock
enable. When its load control, RLD, is LOW, new data is loaded on a positive clock
transition. A few instructions include load; in most systems, these instructions will be
sufficient, simplifying the microcode. The output of the register/counter is available to the
multiplexer as a source for the next microinstruction address. The direct input furnishes a
source of data for loading the register/counter.

The Am2910 contains a microprogram counter (u PC) that is composed of a 12-bit
incrementer followed by a 12-bit register. The u PC can be used in either of two ways: When
the carry-in to the incrementer is HIGH, the microprogram register is loaded on the next
clock cycle with the current Y output word plus one (Y + 1 — u PC). Sequential
microinstructions are thus executed. When the carry-in is LOW, the incrementer passes the Y
output word unmodified so that pu PC is reloaded with the same Y word on the next clock
cycle (Y — p PC). The same microinstruction is thus executed any number of times.

The third source for the multiplexer is the direct (D) input. This source is used for branching.

The fourth source available at the multiplexer input is a 5-word by 12-bit stack (file). The
stack is used to provide return address linkage when executing microsubroutines or loops. The
stack contains a built-in stack pointer (SP) which always points to the last file word written.
This allows stack reference operations (looping) to be performed without a pop.

The stack pointer operates as an up/down counter. During microinstructions 1, 4, and 5, the
PUSH operation is performed. This causes the stack pointer to increment and the file to be
written with the required return linkage. On the cycle following the PUSH, the return data is
at the new location pointed to by the stack pointer.

During five microinstructions, a POP operation may occur. The stack pointer decrements at
the next rising clock edge following a POP, effectively removing old information from the top
of the stack.

The stack pointer linkage is such that any sequence of pushes, pops, or stack references can be
achieved. At RESET (instruction 0), the depth of nesting becomes 0. For each PUSH, the
nesting depth increases by 1; for each POP, the depth increases by 1. The depth can grow to 5.
After a depth of 5 is reached, FULL goes LOW. Any further PUSHes onto a full stack
overwrite information at the top of the stack but leave the stack pointer unchanged. This
operation will usually destroy useful information and is normally avoided. A POP from an
empty stack may place non-meaningful data on the Y outputs but is otherwise safe. The stack
pointer remains at 0 whenever a POP is attempted from a stack already empty.

The register/counter is operated during three microinstructions (8, 9, and 15) as a 12-bit
down-counter, with result = zero available as a microinstruction branch test criterion. This

provides efficient iteration of microinstructions. The register/counter is arranged so that if it is

preloaded with a number n and then used as a loop termination counter, the sequence will be
executed exactly n + 1 times. During instruction 15, a three-way branch under combined
control of the loop counter and the condition code is available.

The device provides three-state Y outputs. These can be particularly useful in designs
requiring automatic checkout of the

< T

BaL R BRLE REIOTEE
vamTE,

.......

st

1
"
1
K

l
!

B

sl

fenl
]
|

1
¥

il
i]

H

il‘
-
;
L
'\.__!‘

e
o |

||||||

FEIEITE

|]
1 7 {} J‘ man
VIEE PO PV o .
- T "l ¥ - - i
—1 =
et o

Y T S

a—mm el a-rim

e [
L LILA Q.

TR, coATE TR
s [[

NN

Fig. 28, Typical bipolar microcomputer using Am2810.

processor. The microprogram controller outputs can be forced into the high-impedance state,

and pre-programmed sequences of microinstructions can be executed via external access to
the address lines.

Operation

Table 6 shows the result of each instruction in controlling the multiplexer which determines
the Y outputs, and in controlling the three enable signals PL, MAP, and VECT. The effect on

the register/counter and the stack after the next positive-going clock edge is also shown. The
multiplexer determines which internal source drives the Y outputs. The value loaded into p
PC is either identical to the Y output or else 1 greater, as determined by CI. For each
instruction, one and only one of the three outputs PL, MAP, and VECT is LOW. If these
outputs control three-state enables for the primary source of microprogram jumps (usually
part of a pipeline register), a PROM which maps the instruction to a microinstruction starting
location, and an optional third source (often a vector from a DMA or interrupt source),
respectively, the three-state sources can drive the D inputs without further logic.

Several inputs, as shown in Table 7, can modify instruction execution. The combination CC
HIGH and CCEN LOW is used as a test in 10 of the 16 instructions. RLD, when LOW,
causes the D input to be loaded into the register/counter, overriding any HOLD or DEC
operation specified in the instruction. OE, normally LOW, may be forced HIGH to remove
the Am2910 Y outputs from a three-state bus.

The Am291 0 Instruction Set

The Am2910 provides 16 instructions which select the address of the next microinstruction to
be executed. Four of the instructions are unconditional-their effect depends only on the
instruction. Ten of the instructions have an effect which is partially controlled by an external,
data-dependent condition. Three of the instructions have an effect which is partially
controlled by the contents of the internal register/counter. The instruction set is shown in
Table 6. In this discussion it is assumed that C,, is tied HIGH.

In the 10 conditional instructions, the result of the data- dependent test is applied to CC. If the
CC input is LOW, the test is considered to have been passed, and the action specified in the
name occurs; otherwise, the test has failed and an alternate (often simply the execution of the
next sequential microinstruction) occurs. Testing of CC may be disabled for a specific
microinstruction by setting CCEN HIGH, which unconditionally forces the action specified in
the name; that is, it forces a pass. Other ways of using CCEN include (1) tying it HIGH,
which is useful if no microinstruction is data-dependent; (2) tying it LOW if data-dependent
instructions are never forced unconditionally; or (3) tying it to the source of Am2910
instruction bit I, which leaves instructions 4, 6, and 10 as data-dependent but makes others
unconditional. All of these tricks save one bit of microcode width.

The effect of three instructions depends on the contents of the register/counter. Unless the
counter holds a value of zero, it is decremented; if it does hold zero, it is held and a different
microprogram next address is selected. These instructions are useful for executing a
microinstruction loop a known number of times. Instruction 15 is affected both by the
external condition code and the internal register/counter.

Perhaps the best technique for understanding the Am2910 is to simply take each instruction
and review its operation. In order to provide some feel for the actual execution of these
instructions, Fig. 29 is included and depicts examples of all 16 instructions.

The examples given in Fig. 29 should be interpreted in the following manner: The intent is to
show microprogram flow as various microprogram memory words are executed, For example,
the CONTINUE instruction, instruction 14, as shown in Fig. 29, simply means that the
contents of microprogram memory word 50 are executed and then the contents of word 51 are

executed. This is followed by the contents of microprogram memory word 52 and the
contents of microprogram memory word 53. The microprogram addresses used in the
examples were arbitrarily chosen and have no meaning other than to show instruction flow.
The exception to this is the first example, JUMP ZERO, which forces the microprogram
location counter to address ZERO, Each dot refers to the time that the contents of the
microprogram memory word is in the pipeline register. While no special symbology is used
for the conditional instructions, the test to follow will explain what the conditional choices are
in each example.

It might be appropriate at this time to mention that AMD has a microprogram assembler
called AMDASM, which has the capability of using the Am2910 instructions in symbolic
representation. AMDASM's Am2910 instruction symbolics (or mnemonics) are given in Fig.
29 for each instruction and are also shown in Table 6.

Instruction 0. JZ (JUMP and ZERO, or RESET) unconditionally specifies that the address of
the next microinstruction is zero. Many designs use this feature for power-up sequences and
provide the power-up firmware beginning at microprogram memory word location 0.

Instruction 1 isa CONDITIONAL JUMP-TO-SUBROUTINE via the address provided in the
pipeline register. As shown in Fig. 29, the machine might have executed words at addresses
50, 51, and 52, When the contents of address 52 are in the pipeline register, the next address
control function is the CONDITIONAL JUMP-TO-SUBROUTINE. Here, if the test is
passed, the next instruction executed will be the contents of microprogram memory location
90. If the test has failed, the JUMP-TO-

HE

Tabda & Instructions

Reg! | Fail _ pAss
by CCEN -um'nm':_t’ # HIGH CCEN = High or OC = lany Re!
;!:T.. Mnemonic | Mome iz T STACK ¥ STACK cntr Enable
a a2 FUMP ZEAD X o CLEAR 0 CLEAR MOLD | FL
1 i COND J5H PL % pC HOLD D PUSH HOLD | PL
2 JMAP JUME MAF x 0 HOLD o HOLD HOLD | MAP
3 | cw COHD JUMP PL X PO HOLD o HELD HOLD | PL
a PUSH PUSH COND LD GNTR x FC PUSH PG PUSH t FL
5 JSRP COND J58 RIPL % A PLISH D PLISH HoLD | PL
g o COND JUMP VECTOR " PG HOLD o HOLD HOLD | WECT
7 JRP COND JUMF R/PL X A HOLD o HOLD HOLD | FL
+0 F HOLD F HOLD DEG FL
] RFCT REPEAT LOOP, CNTR » 0 = == = = e e
#0 o HOLD o HOLD DEC PL
8 il RERSAT LU o 20 =1 PG HOLD PC HOLD HOLD PL
A CATH COND ATH X PC HOLD F POP HOLD PL
8 CIPP GOND JUMP PL & POP % FC HOLD o POR HOLD PL
c LOCT LD GHTR & COMTINUE x PG HOLD PG HOLD LOAD | PL
[} LOoR TEST END LOGF x | F HOLD PC sop HOLD | PL
E GORT CONTIMNUE X PL HOLD PC HZLD HOLD PL
' <0 F HOLD PC FOp DEC L
F W THREE-WAY BRANCH — = — = = T
st GOEM = LOW anc OC = HIGH, hold; el oad 3 = Don't Care
Table 7 Pin Functions
Abbreviation Name Function

D

CC

CCEN

Cl

RLD

OE

CP

Direct Input Bit i

Instruction Bit i

Condition Code

Condition Code Enable

Carry-In

Register Load

Output Enable

Clock Pulse

Direct input to register/counter and multiplexer. Do is
LSB.

Selects one-of-sixteen instructions for the AM 2910.
Used as test criterion. Pass test is a LOW on CC.

Whenever the signal is HIGH, CC is ignored and the
part operates as though CC were true (LOW).

Low order carry input to incrementer for microprogram
counter.

When LOW forces loading of register/counter
regardless of instruction or condition.

Three-state control of Y; outputs.

Triggers all internal state changes at LOW-to-HIGH

edge

Vece +5 Volts

GND Ground

Yi Microprogram Address Address to microprogram memory. Yo is LSB, Y11 is

Bit i MSB.

FULL FULL Indicates that five items are on the stack.

PL Pipeline Address Enable Can select #1 source (usually Pipeline Register) as
direct input source.

MAP Map Address Enable Can select #2 source (usually Mapping PROM or PLA)
as direct input source.

VECT Vector Address Enable Can select #3 source (for example, Interrupt Starting

Address) as direct input source.

SUBROUTINE will not be executed; the contents of microprogram memory location 53 will
be executed instead. Thus, the CONDITIONAL JUMP-TO-SUBROUTINE instruction at
location 52 will cause the instruction either in location 90 or in location 53 to be executed
next. If the TEST input is such that location 90 is selected, value 53 will be pushed onto the
internal stack. This provides the return linkage for the machine when the subroutine beginning
at location 90 is completed. In this example, the subroutine was completed at location 93 and
a RETURN-FROM-SUBROUTINE was found at location 93.

Instruction 2 is the JUMP MAP instruction. This is an unconditional instruction which causes
the MAP output to be enabled so that the next microinstruction location is determined by the
address supplied via the mapping PROMs. Normally, the JUMP MAP instruction is used at
the end of the instruction fetch sequence for the machine. In the example of Fig. 29,
microinstructions at locations 50, 51, 52, and 53 might have been the fetch sequence, and at
its completion at location 53, the jJump map function would be contained in the pipeline
register. This example shows the mapping PROM outputs to be 90; therefore, an
unconditional jump to microprogram memory address 90 is performed.

Instruction 3, CONDITIONAL JUMP PIPELINE, derives its branch address from the
pipeline register branch address value (BRo-BR11 in Fig. 28). This instruction provides a
technique for branching to various microprogram sequences depending upon the test
condition inputs. Quite often, state machines are designed which simply execute tests on
various inputs waiting for the condition to come true. When the true condition is reached, the
machine then branches and executes a set of microinstructions to perform some function. This
usually has the effect of resetting the input being tested until some point in the future. Figure
29 shows the conditional jump via the pipeline register address at location 52. When the
contents of microprogram memory word 52 are in the pipeline register, the next address will
be either location 53 or location 30 in this example. If the test is passed, the value currently in
the pipeline register (3) will be selected. If the test fails, the next address selected will be
contained in the microprogram counter, which in this example is 53.

Instruction 4 is the PUSH/CONDITIONAL LOAD COUNTER instruction and is used
primarily for setting up loops in microprogram firmware. In Figure 29, when instruction 52 is
in the pipeline register, a PUSH will be made onto the stack and the counter will be loaded on
the basis of the condition. When a PUSH occurs, the value pushed is always the next
sequential instruction address. In this case, the address is 53. If the test fails, the counter is not
loaded; if it is passed, the counter is loaded with the value contained in the pipeline register
branch address field. Thus, a single microinstruction can be used to set up a loop to be

executed a specific number of times. Instruction 8 will describe how to use the pushed value
and the register/counter for looping.

0 AR FERG LF 1 COMND B8Pl CS) 2 OJLIMP MAF PSR

L2 —
d __-@" 111) 5T R [
:]) Y
" == 1)]
5] : Wl =1
=; - w

3 COND MmaF PL |G | 4 PUSHICOND LD ENTR BPUEH) 5 COND J8B RIFL {JSAF

5

&

&

] e

=]
™

|
I
- | -
! %
|

w B, -
i
& COMD P YECTOR ICJW) 7 COND JUMP R/PL URP) 1- : E =
| 5 3 [
sl ™ L
&l
-
] - 2 L3
| n]

& REPEAT LOGE, CHNTR & DAFCT) | @ REPEAT PL, CMTH # O IKPCTH 10 COMD RETLAN WICATHI

FTALK
#13EHI

/-'@ LOLNIER
id ___{E:lq;;.:,u,a 13 _____-F":E}-.w.--
a1 GOURTER &l ™
=0 W
(=] | &
1]
15

11 CONDE JUMP FL & FOP [CJFF] | 17 LD ENTA B CONTINUE ILDCT)

§ | CoUNTER
™
w
3 S
" 3]
=
|
R & T3 ik
14 CONTIMUE $EONT] 15 THREE WAY BRARCH [THEI o s
L
Al L]
@0 a2 _,_.FIE Lo &
i BEGISTLE s
= } 7] ___.-E:I CL{NTER ‘ £
" br] L)
o
53 . "’;] J
L |

Fig. 29, Am2910 axecution examples.

Instruction 5 is a CONDITIONAL JUMP-TO-SUBROUTINE via the register/counter or the
contents of the Pipeline register. As shown in Fig. 29, a PUSH is always performed and one
of two subroutines executed. In this example, either the subroutine beginning at address 80 or
the subroutine beginning at address 90 will be performed. A return-from subroutine
(instruction 10) returns the microprogram flow to address 55. In order for this
microinstruction control sequence to operate correctly, both the next-address fields of

instruction 53 and the next-address fields of instruction 54 have to contain the proper value.
Let us assume that the branch address fields of instruction 53 contain the value 90 so that it
will be in the Am2910 register/counter when the contents of address 54 are in the pipeline
register. This requires that the instruction at address 53 load the register/counter. Now, during
the execution of instruction 5 (at address 54), if the test fails, the contents of the register
(value = 90) will select the address of the next microinstruction. If the test input passes, the
pipeline register contents (value = 80) will determine the address of the next microinstruction.
Therefore, this instruction provides the ability to select one of two subroutines to be executed
based on a test condition.

Instruction 6 is a CONDITIONAL JUMP VECTOR instruction which provides the capability
to take the branch address from a third source heretofore not discussed, In order for this
instruction to be useful, the Am2910 output, VECT, is used to control a three-state control
input of a register, buffer, or PROM containing the next microprogram address. This
instruction provides one technique for performing interrupt-type branching at the
microprogram level. Since this instruction is conditional, a pass causes the next address to be
taken from the vector source, while failure causes the next address to be taken from the
microprogram counter. In the example of Fig. 29, if the CONDITIONAL JUMP VECTOR
instruction is contained at location 52, execution will continue at vector address 20 if the
TEST input is HIGH and the microinstruction at address 53 will be executed if the TEST
input is LOW.

Instruction 7 is a CONDITIONAL JUMP via the contents of the Am2910 register/counter or
the contents of the pipeline register. This instruction is very similar to instruction 5, the
CONDITIONAL JUMP-TO-SUBROUTINE via R or PL. The major difference between
instruction 5 and instruction 7 is that no push onto the stack is performed with 7. Figure 29
depicts this instruction as a branch to one of two locations depending on the test condition.
The example assumes the pipeline register contains the value 70 when the contents of address
52 are being executed. As the contents of address 53 are clocked into the pipeline register, the
value 70 is loaded into, the register/counter in the Am2910. The value 80 is available when
the contents of address 53 are in the pipeline register. Thus, control is transferred to either
address 70 or address 80, depending on the test condition.

Instruction S is the REPEAT LOOP, COUNTER = ZERO instruction. This microinstruction
makes use of the decrementing capability of the register/counter. To be useful, some previous
instruction, such as 4, must have loaded a count value into the register/counter. This
instruction checks to see whether the register/counter contains a non-zero value. If so, the
register/counter is decremented, and the address of the next microinstruction is taken from the
top of the stack. If the register/counter contains zero, the loop exit condition is occurring;
control falls through to the next sequential microinstruction by selecting pu PC; the stack is
POPped by decrementing the stack pointer, but the contents of the top of the stack are thrown
away.

An example of the REPEAT LOOP, COUNTER # ZERO instruction is shown in Fig. 29. In
this example, location 50 most likely would contain a PUSH/CONDITIONAL LOAD
COUNTER instruction which would have caused address 51 to be PUSHed onto the stack and
the counter to be loaded with the proper value for looping the desired number of times.

In this example, since the loop test is made at the end of the instructions to be repeated
(microaddress 54), the proper value to be loaded by the instructions at address 50 is one less
than the desired number of passes through the loop. This method allows a loop to be executed

1 to 4096 times. If it is desired to execute the loop from 0 to 4095 times, the firmware should
be written to make the loop exit test immediately after loop entry.

Single-microinstruction loops provide a highly efficient capability for executing a specific
microinstruction a fixed number of times. Examples include fixed rotates, byte swap, fixed-
point multiply, and fixed-point divide.

Instruction 9 is the REPEAT PIPELINE REGISTER, COUNTER # ZERO instruction. This
instruction is similar to instruction 8 except that the branch address now comes from the
pipeline register rather than the file. In some cases, this instruction maybe thought of as a one-
word file extension; that is, by using this instruction, a loop with the counter can still be
performed when subroutines are nested five deep. This instruction's operation is very similar
to that of instruction 8. The differences are that on this instruction, a failed test condition
causes the source of the next microinstruction address to be the D inputs; and, when the test
condition is passed, this instruction does not perform a POP because the stack is not being
used.

In the example of Fig. 29, the REPEAT PIPELINE, COUNTER = ZERO instruction is
instruction 52 and is shown as a single microinstruction loop. The address in the pipeline
register would be 52. Instruction 51 in this example could be the LOAD COUNTER AND
CONTINUE instruction (instruction 12). While

the example shows a single microinstruction loop, by simply changing the address in a
pipeline register, multi-instruction loops can be performed in this manner for a fixed number
of times as determined by the counter.

Instruction 10 is the conditional RETURN-FROM-SUBROUTINE instruction. As the name
implies, this instruction is used to branch from the subroutine back to the next
microinstruction address following the subroutine call. Since this instruction is conditional,
the return is performed only if the test is passed. If the test is failed, the next sequential
microinstruction is performed. The example in Fig. 29 depicts the use of the conditional
RETURN-FROM-SUBROUTINE instruction in both the conditional and the unconditional
modes. This example first shows a JUMP-TO-SUBROUTINE at instruction location 52,
where control is transferred to location 90. At location 93, a conditional RETURN-FROM-
SUBROUTINE instruction is per formed. If the test is passed, the stack is accessed and the
program will transfer to the next instruction at address 53. If the test is failed, the next
microinstruction at address 94 will be executed. The program will continue to address 97,
where the subroutine is complete. To perform an unconditional RETURN-FROM-
SUBROUTINE, the conditional RETURN-FROM-SUBROUTINE instruction is executed
unconditionally; the microinstruction at address 97 is programmed to force CCEN HIGH,
disabling the test, and the forced PASS causes an unconditional return.

Instruction 11 is the CONDITIONAL JUMP PIPELINE register address and POP stack
instruction. This instruction provides another technique for loop termination and stack
maintenance. The example in Fig. 29 shows a loop being performed from address 55 back to
address 51. The instructions at locations 52, 53, and 54 are all conditional JUMP and POP
instructions. At address 52, if the TEST input is passed, a branch will be made to address 70
and the stack will be properly maintained via a POP. Should the test fail, the instruction at
location 53 (the next sequential instruction) will be executed. Likewise, at address 53, either
the instruction at 90 or 54 will be subsequently executed, depending on whether the test has
been passed or failed. The instruction at 54 follows the same rules, going to either 80 or 55.

An instruction sequence as described here, using the CONDITIONAL JUMP PIPELINE and
POP instruction, is very useful when several inputs are being tested and the microprogram is
looping waiting for any of the inputs being tested to occur before proceeding to another
sequence of instructions. This provides the powerful jump-table programming technique at
the firmware level.

Instruction 12 is the LOAD COUNTER AND CONTINUE instruction, which simply enables
the counter to be loaded with the value at its parallel inputs. These inputs are normally
connected to the pipeline branch address field which (in the architecture being described here)
serves to supply either a branch address or a counter value, depending upon whether the
microinstruction has been executed. There are altogether three ways of loading the counter:
the explicit load by this instruction 12, the conditional load included as part of instruction 4,
and the_use of the RLD input along with any instruction. The use of RLD with any instruction
overrides any counting or decrementation specified in the instruction, calling for a load
instead. Its use provides additional microinstruction power, at the expense of one bit of
microinstruction width. This instruction 12 is exactly equivalent to the combination of
instruction 14 and RLD LOW. Its purpose is to provide a simple capability to load the
register! counter in those implementations which do not provide microprogrammed control
for RLD.

Instruction 13 is the TEST END-OF-LOOP instruction, which provides the capability of
conditionally exiting a loop at the bottom; that is, this is a conditional instruction that will
cause the microprogram to loop, via the file, if the test is failed or else to continue to the next
sequential instruction. The example in Fig. 29 shows the TEST END-OF-LOOP
microinstruction at address 56. If the test fails, the microprogram will branch to address 52.
Address 52 is on the stack because a PUSH instruction has been executed at address 51. If the
test is passed at instruction 56, the loop is terminated and the next sequential microinstruction
at address 57 is executed, which also causes the stack to be POPped, thus accomplishing the
required stack maintenance.

Instruction 14 is the CONTINUE instruction, which simply causes the microprogram counter
to increment so that the next sequential microinstruction is executed. This is the simplest
microinstruction of all and should be the default instruction which the firmware requests
whenever there is nothing better to do.

Instruction 15, THREE-WAY BRANCH, is the most complex. It provides for testing of both
a data-dependent condition and the counter during one microinstruction and provides for
selecting among one of three microinstruction addresses as the next microinstruction to be
performed. Like instruction 5, a previous instruction will have loaded a count into the
register/counter while pushing a microbranch address onto the stack. Instruction 15 performs
a decrement-and-branch-until-zero function similar to instruction 8. The next address is taken
from the top of the stack until the count reaches zero; then the next address comes from the
pipeline register. The above action continues as long as the test condition fails. If at any
execution of instruction 15 the test condition is passed, no branch is taken; the microprogram
counter register furnishes the next address. When the loop is ended, either because the count
has become zero or because the

conditional test has been passed, the stack is POPped by decrementing the stack pointer, since
interest in the value contained at the top of the stack is then complete.

The application of instruction 15 can enhance performance of a variety of machine-level
instructions, for instance: (1) a memory search instruction to be terminated either by finding a
desired memory content or by reaching the search limit, (2) variable-field-length arithmetic
terminated early upon finding that the content of the portion of the field still unprocessed is all
zeros, (3) key search in a disc controller processing variable-length records, and (4)
normalization of a floating-point number.

As one example, consider the case of a memory search instruction. As shown in Fig. 29, the
instruction at microprogram address 63 can be instruction 4 (PUSH), which will push the
value 64 onto the microprogram stack and load the number n, which is one less than the
number of memory locations to be searched before giving up. Location 64 contains a
microinstruction which fetches the next operand from the memory area to be searched and
compares it with the search key. Location 65 contains a microinstruction which tests the result
of the comparison and also is a THREE-WAY BRANCH for microprogram control. If no
match is found, the test fails and the microprogram goes back to location 64 for the next
operand address. When the count becomes zero, the microprogram branches to location 72,
which does whatever is necessary if no match is found. If a match occurs on any execution of
the THREE-WAY BRANCH at location 65, control falls through to location 66, which
handles this case. Whether the instruction ends by finding a match or not, the stack will have
been POPped once, removing the value 64 from the top of the stack.

APPENDIX 1 AM2003 ISP DESCRIFTION

(LT
haghe
1OESPE dedripion af L AIGI] & BiL o) dce micraproceiiar.

[ne dsncrintion costacas detlavitieed e §ienbe QERFREEL
mid el 1AL S aRsrine Lre aciual

upn carrincy that

ELans"" daiir

CHEFREEE P DLATY

w
far ias L3P chees 'l'||¢-

1 Page T dmacribes the scceRn compatat ions vd Lz dawia ael 4hak
i el el =i dute.

1 Page ¥ :mL-Im diner ipligns of §Ee banic aperacion cycls asd
i affudl IAELFwil b mEscubion.

| Page -_- - -;| ceninie dmscriplipes of !v-*..qu.lu-l far L I [
1 L F plu tha "gi" and "p
o ard cwrry propogile thI“l!llu

I I‘il.l hifLar
ELE L
L 5 depuka Lz ALD

R T
BAHLE: 134085,

refateranl Stniat®

51404 bt T opeerlk MW

TA B porl bepul @0d0ERE

YR KA poey Eepul acdress

i darrg in

! Mirmzh deta ieput 40 b}

Mirmek daks iepmt {5 lsger)
TS vk, 0 LR |

rom B
Lew L by ikd i@ [10W Lraa]
aal Stgeificamt Shice

i ahifi L5B
S50l vh BOF BADTE puLped
S5eHIGH = rappl @

HIGH &> 5. LiPW +3 HES
Wiakid fesnle: (D6 =d QEH = ¥
e epul/output

§ lamtrucican sepuls
tio Declarat fone®®

later Far compated F
fater ler rrspaied

1 Accumslaior Fer crmpuaid (aed
T latoraal wesly T18g

macra bir = | 1. £ Trikabe Seedlisl
macra parigy e [Feir agk FoRs gar BO0r per Fo0F anr 3003],
L] pd JRER s [rat MORESR)

UrMEeans Compubat foa®dfus]

Bt 18 | faerze cnleulatian
Al

"
:3301: A @ 140 B Aare =5

t g Lassl ign cabeelat i

!ORSIETe TR

5HET B 3103 o SHE A E

IF el 1361 1952 %5 ASNTTADSHEFTcEY o | RBHE TR T |
WLEE » 0

REBGE 123 =)

e gt ¢ alad = wie,
Lis A b el aaln'y

P
Lo nagia | KSEFT= T
NS om0 ST0H = parsby; WRITE = [OBF ser Lil3;
UI(W.I TOB:ET u)
o

= QEDD = hiE.,
+ B JIDI = OEON B Q.
« {pral » P A il

e q.vu'l - 2
s.'ﬂ: b AsH o 1 B AR 8
IF man ged [app 14833 ok 5100 # anprer - mmrnans @ sim:
Wi = B
b 1k -
:.'?- [1L
| .-qmlp-piflﬂ
A “" 3 AERRTE <Eh, tHEBEG
.:urml |-'| 2 gl "0 a
"(ASHER = Py 3103« wel3; H108 o ki3],
ASFT (= 5098
L =
Ooie QU1 ¢ 107 =
1in QUG =&
e
s
[LE]
CItH

inspmactlan cpcle

b
f[» § rax
BLCOAL PN w3
tagoe
B ore begis
nosares| | -ul
#Eacl) pexl
14807 q[ﬂ L L] h;l.ll.ll.ibﬂl] L L1}
17 sl P56 s W.HES = WELIE ARal
IF gt QLF o 7 o BRNFT fepaf
IV roi W so mEE{R] ¢ 0 asan
1

Fr

and awpl
BLSTANT Fo@
e,

s+laptract Gon EnaiuldgnTe i}

LS LI

"
DECEEN d<diar =2
g

u
" ze |BECORE [cBd =3
magin

i i.unu-u:l

-1y 4 ER,
- i s £,
[

v e,
el Bp o+ 0,
LR
{man RY 4 Co,

L] L h

ws1 & ar 5],
Bl B omed 5.
Eor I,

o

w3 are decedad Trom 1oloks whbs 108:0% squa
Ti-if =il ip) scaiiten, dieidbon, aid spmal

aps id, Fadctdang o9

in

LD 148: 8% =3
el
R I T 1] [TLEATT]
m!mr LS t mplg.!qs g 1T ¥

mngla P ouRpER APw ddearical.
Ao T o & s fa,
Foe fow (5w Rp +Ca

Al adet
OILO0 mpg <>

begin
a [R5 @ 5100 = §103 P r: WEIIE « 4],
Pord (3403 0 bis; 1w
y fEEF % I olehs U
in L L1 wk 0E

AEEFT B SPEE = [nd B
ATATT @ SPOE s (Fid3 epe FOOVA[)L @ T

¥
1
[
LLll]

[ncreasnt iy Bea g L
. LB o) 1 S-Tea'a Cz.ﬂllll.l -
wgre
Booe SBSFT w ¥ o |5 0} + O,
LIRE 1Y f L
-
3"' AEHET & 1 + & = €,
1 =n BSIRF o T = [eap §) = €4

Lk
P sy e Ag

dr oo S93F mar Fid¥)

o, CEED @ SIS 10N qar PLONR(]) 4 F)
e
QUG s s ® 9 MEITE = G

T Warmafice

PLCOEE mpp =

in

= SECO o ASMTT = F @ 3000,
AEHT

BLR-10- N
v [PID mee TERE) @ OTEF 05§ £008
(L]

wad
P01 R -3 @I WEIN - B

0 e Bagim
Giemr T =
Beg o
@ o e g5 e A] s Ln,
Boow B (5 0 B = 13 & €0

=80 Aal
DOl 140 =5
bagin
0 e DEOME wax =3
megin
@ o:= SEET W ASHED = F & 5000,
bord 5191 @RI
BOIROYT wae TO33) F POE B @ S10E

! fea's Casplessai dislide

wad,

[WSETT » T2 5080 = TElv) 5008 = kig)
L

U3 @G o= p @ Qb WHIFE & 0

W

#e5ura loa, Facd 1 Limer=fur)

IIeE o

LIFL]
BfonE 11ae1r o
in

el

L]

1 Compiits lere owtpat

@ v MOME D00k =3

“h
B

1% IF @dg ok T
LI 1

L]
e e 1m0
k

IF man LREL 3 | oo Qemr,
I o= ASWT wql g,
= 500,

i,

Loce @ o= RSNIT mql @

WeeF e F :E"l

ol T BT) L] L3 L]
red =

Qi1 =

bagin

BAIER A
I

ar e
b

M H

v HOME [ihies ey
rogie

"1 e DESEE [owp
hegin
1

vl
LR LR
il

[edygs o
i

i

act B] and &,

[t 5l

") ind (st 5)

carey Bivarala

v L L
Too [el B3 sed (F agl 37,
LF man ok & ® REDS de F2D3

= OED @ B,
=0

s
 (rat B} sl 3

= 8 o

| Intarmediaee Sarry Prigageva

F1e OCCOOE [€83 s}

bagla

oI

cempetatien,
FLU B S A
"
173 re OUIDAL T 0F
LU
-5
R d
- L
PETINER |
-1
"8 1
=5,
= wmk
<
s B
= inat H)
b |
= Ear 5.

* [mat #j

i 5,
B 1Nl B ard 5

LN

ar &

{ Spwcial Tunch bara ars deccded Trom]+
| Thudk are Eha Beill-in swlilplica s

| Feesipiaea.

Bb whsen 10D Iq-l'l
vitiak. ard seraa

"H:°T =

#ind,

T AulRiply

LR] ! Uhh igead ang TCF
L4} B auipetd ade idealical.
14
||'|' © Ay,
1 |-=ua «

s
| el & § wr BC
oL = Cnd B T,
124 & [Fid) wes PLODVALT) @

and.
f [agreienl by sem or Lo
2 Se-Twa ‘s Compliemeen

L) MSHFT = T = [§ + 0} + Ca_
§oow [PRECOOL I =)
[

D oEs ARBHIE & F = & + fn,
I'.'.Iﬁ.lif'r'rﬁl.ﬁil':l

il neni
0F w4 o> RBNRGER = SOEEF mar FUB3)

: WAL . g
in ! Tea"y Complansat
:l:'gm L] 1 ::l.,nplp Farract lan

g im
Boyedl s f+in,
Lo 0 = [ugt §] # (a
wrvd rant
BILEE may a7
i
ﬁ- ASHET B iIN = AHE R OF.
1 i {5MO = Wia

SMED B SIDD = [T433 sar PLENR{I] B F)
*
2100« puoz w g, Wi s g
[Barmal irs

* [RLDr s Sekr) @ 0G4 10

)
Nluill 0O FIgE: Wi = 1
ard
[!

a M - 'y Casplaseal divide

ha

: lF'!$1i£+!n.

Bow Tom GF - kp - 1p + Cn

wed L
(Rt N LS PR]

in
B oo DECOBE wad a3
N im
T e KRR M ANIET « F @ 3100,
Lo SRR1 A ASEFT
= [ROIx g Tkey b Fidiio @ sion
A,
Vv [ASATD @ g BPSE 8 B33 100 = kix)

» 0 QEDd: WEIFL o 0

*eSaie bbe. Pae i | Lani k)

e I Comjule lars asspat

=
[1TRz1F ad
in

a
"1 MHO0BE [<0F =3

Bagir

B DEODDE DR e

in
[":"1, ﬂ-m o IF ngn L3S0 =3 I = QoBD,
A e @ ASHET eqd @

=9 oo,
T +ﬂ1u:|nd

o
. 7w WS w0
T agl B

!‘IJ"::I N' e
hm H'l 13 =2

I Iniacnediste Carey
I cenputaiian,

":l 1 L1
.E:l:'ll Lz w)

Brgla
e BECEEE [KE:) =
s
BT s pECIOE 2 =n
e
i

[*5.78:"B):=s gi = &,
AT Moty

bmgin
I.?l gl
Nore g
[
| zogimd
il
[=1,°n, quet B} sag §,
T =3 B asd Ell:t 5.
[-2.°a, LEC BN

['I..:J l:rl|lt W) and (et B)

LN
p1|:||::| -u!n I

Pempal Al ign.
m:m: I:H I =)

“8 e DLEDOE [GED =3
Bagla
CIRELE e iliu:u L]
0
F0i"3 e OCCOSE F oo
L1

e Sh B

IF maa =k I = &id5,

iF agl 13,

48 B e FEDD

Sevaraia

s g

S5 =3
= R0 EED,
=g

i=®,
Bl Bl g 5

= 0wl 8,
= [apt B} ara §

I InLereagiate Carry Prepoguts

= Eidly BN,
(B]

= mat 5
-5,
© Dngn WY aF 8

= Ear 5.
v [mal M) or &

7

0w MCEDE D40 =
:‘;-I.N'I;WE |:-:|:|:- =
a

[*a:"T .o g tp asd tn)

on RLCOPE wE

l:n . - wed Enfi.
Cad -51.. Ii" i '
“N:TH -|I:IZ¢H: -y

b in

SHES R

&
|:|1 = g-lr {w and €n).
a4

1 (el PR pia

pif] @ax "T101 mast
MO mas =

vl
+ BECODY 1e4:13 =)
g i
B e seas o
n
[oco DCCORE B<ArBF =3
hagln

P.OWE v [nd mar Cad,
PoORK » GRE3 aBF GELE,
e WK = P42y mer FlLD

! {not BiH pia

Al
"B atoser 148
in
O oo DICONE T<B:RF &3
in

L
[i Bl B Pl B 1 '1 G,H v TikE,

av REONDE & =p

in
.Ifl*-l- G o= TR
oo G.E o TidF wor ad3F

wd
b Fol BETEE N RE o L]
oot BN P

el
TLTF e G o= B3R
mie

L]
e,

i '!ld.-r:ll' AHFIES debir bgn i j

APPEMDIX 2 (right) AM2910 ISP DESCRIPTION

ARG g

[
|15 dedcsipticn of AN 4RZ
Tea WSO 171 8 12 kiR
1 Trah coetroller 13 cnadgend te
| mlgeat s 1 11C8 a8 dg

t Slaulation of iha Hﬂﬁll
L s

rrRl Simiets

¥,

e
EASC] Al R]eELI,
SFLutaranh State™®

163 9 dRcdedd,
BEdn .
BLD=s .

o= [TEE

PLED e amak1a<E3,
I:'F'.'I.:l L AL L b

v L Lo W

wrab e T 0T,
Tuildr,
PRBLLY
misra Rk is |TREFE |,
“lparation. Cro e)
sanfania] v
-

1] wlmr:u-umn

ﬂ'i r-l:I:-u.n

st il

asggivess BEarce. Seisckizattlas}
LTI
bagis

1 an1
i mey
il = I:HI‘HI 1 :

3 o ret Tail e
I?I":II‘ i o=y

= (IF 5P

"Em:armna:-
[]

et ErLLSmE rgai b
Ve SdTmenl e SHIWEL a0 |RLIEA -

T L

mlcragragras vansReser,

Hel gl o j|l-“ with

t Micropergran cowmtar
1 modrean cegluzes
! Bl i

! Bk wgriaee e

! Pipa! i Wﬂd- H-lﬁlj
i arkdrarr

arak
1 Yerior addrsa .'lb-ll-

[

| Comdilion dodd lagl B
I Cowdiiron cods mrably bepail B0
| OERRE ingesls

T BLmk Pulh tlag

T DABLruct b i e
b Lawtruct oy vecion -lr'lll:‘l.l"r e
I gt wastle canirel
¥ # Gl
1
i
1

n-n Tl
awwnly Thag

Bazic cpa=aiiss ladj

| Forced (eaisrmali Toad of reg
' Cifl dBlecEad LBarEal
| Irvimmmy

.:- (L] o * j PR 118
.H‘ii:
:ﬂi«[su wank pal bih
REIT

NAL = L.

tw FIRE e 1p &P 4 5F 2 0],
L

e (K =
thd il
ErATEiEe) ¢

L]

i 1 Dad & EAEIEN dancriplioa

A PDP-8 Implemented from AMD Bit-Sliced Microprocessors

Michael Tsao

An example of a microprogrammable system based on the Am2910 sequencer and the
Am2901 ALU will illustrate design with bit slices. The target machine is the PDP-8 ISP (see
Appendix 1 of Chap. 8). This register-transfer (RT) level design of the micromachine is thus
optimized toward the basic PDP-8. However, the general principles involved in
microprogramming bit slices are illustrated by this example. A major goal of this design is the
clarity of implementation, rather than the economy of design.

Overview

The basic implementation is a one-stage pipeline as shown in Fig. 1 in Chap. 13. In this
micromachine, the pipeline register stores the current microinstruction, which is being
executed by the Am2910 Sequencer and the Am2901 ALU. The status information (zero,
overflow, etc.) of the ALU operations is stored in the Status Register. In a one-stage pipeline
design, conditional branches can be executed only by the microinstruction following the
microcycle that has generated the branching status. The Am2910 sequencer is used instead of
the Am2909 to simplify the design and to aid understandability. A more cost-effective design
might actually result from using the Am2909 sequencer, since the number of microinstruction
types used to emulate the PDP-8 is small. The Am2901 ALU is used because it more closely
reflects the ISP of the PDP-8.

A timing diagram for a typical microcycle is shown in Fig. 1. The indicated delays are typical
values, illustrating the timing requirements rather than actual component performances. On
the rising edge of the system clock, the Pipeline Register latches the microinstruction to be
executed during this microcycle. The output of the Pipeline Register is valid 15 us later. After
another 15-ns delay, the Condition Code input to the Am2910 is valid. The microsequencer
generates the next microaddress based on the current microinstruction and the Condition Code
input. When the microprogram memory output is valid (approximately 130 ns after the rising
clock edge), the microcycle can be restarted. Concurrently with the sequencer operation and
microword fetch, the Am2901 ALU executes the operations specified by the microword in the
Pipeline Register. The output of the ALU is

Systirn clock Wi oot
S5 !
Fizaline Megismer :-.'-2-5'. Eﬂ"ﬁ“
B Afn! 1o
Wue 10 \.;\:31 | P
Candizion Cade | I Bl B opcie
SIguE-mer e : r}\;A E"“: &
' B0 5
wxtana FEIN usput BT
i
$in i
P T
ALU qucgur e H
i 115
Mitcatannous _ il
Regmder 1

Fig. 1. One-stage pipeline microcyole timing wavefarm.

valid prior to the falling edge of the system clock. External registers, such as the Memory
Address Register (MAR) and the Status Register, use the falling clock edge to latch results
from the ALU output port. In this design, the duty cycle of the system clock does not need to
be symmetrical at 50 percent.

RT-Level Implementation and the Microword Format

The RT-level implementation of the Am2900/PDP-8 is shown in Fig. 2 for the control part,
and in Fig. 3 for the data part. The design can best be explained in conjunction with the
microword format shown in Table 1. The ISPS description of the RT-level design is listed in
Appendix 2. The following subsections discuss the meaning of each microword field and the
associated RT-level components. For each microword field, there are three possible bit sizes:
the number of bits normally required for the associated components, the minimum required for
this PDP-8 application, and the actual field size used. The position of each field in the
microword is defined in the ISPS description. The reason for inserting extra bits is to align the
fields on octal boundaries, thus aiding the reading of the encoded microprogram.

Sequencer Instruction and Address Field

The Am2910 sequencer normally requires a 4-bit-wide instruction and a 12-bit-wide "next
address" direct input. The microprogram occupies less than 128 words, requiring only 7 bits
of address. Two extra instruction bits and two extra address bits are inserted as 0s in this
design example for octal boundary alignment.

L

Fig. 2. Micromachine—control and naduenmt.

Out of sixteen Am2910 instructions, only 4 are used in this example: Conditional Jump
Subroutine (CJS, #01), Conditional Jump (CJP, #03), Conditional Return from Subroutine
(CRTN, #12), and Continue (CONT, #16). Therefore, it is theoretically possible to use only 2
bits of information to specify these four actions.

Fig. 3. Micromachine—ALU and data.

Table 1 The Microword Format and Required Bits per Field

Bits per field Normal Minimum Actual
(ISP)

Micro sequencer control

Microinstruction 4 2 6
Next microaddress 12 7 9
Condition code select (6) 6 6

ALU control

ALU instruction

Source 3 3 3
Function 3 3 3
Destination 3 3 3
RAM A port select 4 3 3
RAM B port select 4 3 3
Direct input select 2 2 3
Constant mask select (3) 3 3

Miscellaneous control signals

Control signal select 4) 4 6

Total 48 39 48

Condition Code Input Selection

There is only one condition code (CC) input for the Am2910. The status conditions have to be
multiplexed into this input. The assignments for the multiplexer input lines can be found in
the ISP description in Appendix 1 (ISPS procedure Condition .Code). Five bits are used to
select one out of 32 different input signals. The sixth bit in this field is used to select between
the original signal and the complement of the signal. In this manner, the micromachine can
branch when the signal is either high or low. When an unconditional microprogram branch is
required, a logic 0 can be selected for the CC input.

Each bit from the Instruction Register (IR, 5 bits) or from the Memory Buffer Register (MBR,
12 bits) can be selected individually. This capability is used for the basic PDP-8 instruction
decode, effective address calculation, and the Group 7 microinstruction decode. Random
combinational logic is used to generate a single skip enable signal for the portion of the
microprogram that decodes the PDP-8 skip conditions. Interrupt requests are also handled by
using combinational logic in a similar manner.

ALU Operations and the Link Bit

Three Am2901 ALU chips are cascaded to form the PDP-8 ALU section. The ALU requires a
9-bit opcode: source, function, and destination. Six bits are used to encode the A port (3 bits)
and B port (3 bits) select, since only a subset of the sixteen ALU RAM registers is used in this
implementation.

The PDP-8 Link bit is constructed from random logic con trolled by a set of signals. For
economic reasons, random logic is used rather than adding another Am2901 chip. The Link
bit does not correspond to any Am2901 function, and its control would

have to be separately microprogrammed. Another alternative for the PDP-8 Link hit is to use
one of the Am2901 RAM registers for storing the value. In this case, additional Link-handling
microcode would have to be inserted after each PDP-8 ALU operation, increasing the target
instruction execution time.

Data Input to the ALU

There is only one method of writing external data into the Am2901 ALU. It is through the
Direct (D) input. In this PDP-8 design, three sources are connected to share the D input: data
from the main memory (MBR), constants for ALU operations (the Mask ROM), and data in
the switch register (SWITCHES). These three sources are connected by an input bus to the D
input port on the ALU. The microword selects which one of the three will be the source
during any given microcycle.

The use of a separate ROM to store the constants can be debated. An alternative is to store the
constants in the microword. It is wasteful to dedicate a microword bit field to this purpose,
since the width of this field must be the same as the ALU width and constants are used

infrequently. If the microword fields are multiplexed, we violate the design goal of clarity.
Hence, a constant ROM is a good compromise between the two conflicting objectives. One
need only store the address of the constant in the microprogram.

Miscellaneous Control Signals

The data part of this design requires many miscellaneous control signals. For example, the
Link bit uses seven different signals to control its operation. Analysis indicates that only one
of these signals needs to be asserted during any given microcycle. The Miscellaneous Control
Select field in the microword selects one and only one signal during each microcycle. The
selection code is decoded and directed to the associated destinations. The assignments of the
signals can be found in the ISPS description.

The PDP-8 Primary Memory

The primary memory (MP) for the PDP-8 target machine is assumed to be constructed from
"static" semiconductor memory chips. In this type of memory, the output constantly displays
the content of the location selected by the address input, unless a write operation is in
progress. In this PDP-8 design, the ALU output is connected with the Memory Address
Register (MAR) and with the data input port of the MP. When the write enable line of the MP
is asserted, the content of the ALU output port is latched into the location selected by the
MAR. The Memory Buffer Register (MBR), an ISP implementation pseudoregister, is
constantly displaying the content of the location selected by the MAR. For the ISPS
simulation, the memory access speed is assumed to be less than one microcycle. One can read
the value of MBR (containing data from MP) two microcycles after a "write™ into the MAR.

The Microprogram

The encoded microprogram that emulates the PDP-8 basic instruction set is listed in
Appendix 2. This program listing is extracted from an ISPS simulator command file used to
simulate this microprogrammable machine. The content of the constant ROM (Mask) is
defined using the ISPS simulator "set" command, e.g., "set Mask[4] = #0177." The content of
the microprogram store is also defined in this manner. As an example, the instruction fetch
cycle is now described. (For readability, the encoded microword is broken into seven fields
separated by dashes.)

set uMP[000] = #03-010-10-403-12-00-10

IRUN: MAR « LastPC« PC, IF PDP8.go = 0 goto HALT:

If the PDP-8. go bit is off (Condition code select 10), the microprogram jumps to Halt:
(location 010). The content of PC (ALU RAM[1]) is pushed to the ALU output. The
value is also latched into LastPC (ALU RAM[2]). Concurrently, the value is latched
into the Memory Address Register (MAR) using the control code 10.

set uMP[001] = # 16-000-00-503-11-21-00 !PC« PC+1

The value #0001 is selected from the constant Mask ROM (21). The PC value is
selected at the ALU A port, added to the constant, and then latched back into PC.

set UMP[002] = #03-040-41-703-05-10-15

IR« ALU.Mb<« MBR, goto Exec:

The content of the Memory Buffer Register (obtained by the MP[MAR] operation) is
latched into the ALU. Mb (ALU RAM]I5]). In this cycle, the MBR is also latched into
the Instruction Register (IR) by the control signal 15. The micro program jumps to the
instruction execution section (location 040, Exec:) by forcing a pass-test condition
(41) into the Am2910 sequencer Condition Code input.

set uMP[004] = #03-000-03-741-00-20-10
IENDex: MAR<« 0, IF no interrupt goto RUN:

When the instruction execution is finished, the microprogram returns to this point. The
MAR is set to zero in anticipation of interrupt servicing. The MAR will be reset to the
correct PC value by microinstruction uMP[001] later on. If the interrupt request is not
granted (condition code 03), the microprogram jumps back to RUN: (location 000).
Otherwise, the program continues to location uMP[005] to handle the interrupt.

Implementation and Simulation Results

The micromachine and the microcode were simulated and tested by the ISPS simulator. The
results are presented here.

Chip Count

Since the micromachine was not actually built, the chip count is an estimate of the required
hardware parts. The goal of this exercise is to identify the inefficient area in terms of the parts
count, and to suggest alternative I1C chip types that may reduce the parts count. (See Table 2.)

The parts count for this microprogrammed PDP-8 implementation is 35 chips. Of these IC
parts, over two-thirds (25 chips) are SSI or MSI types. If IC custom-made parts are available
for the Link bit, the Skip-condition generate, and the Pipeline Register, the design can be
reduced to 22 chips.

Target-Machine Instruction Execution Speed

Two methods of comparing this microprogrammed PDP-8 and a basic PDP-8 are discussed
here. By counting the average number of microinstructions executed for a target instruction,
one can estimate the execution speed of the emulated PDP-8. Or one can compare the
execution speed of the two LSPS simulators.

Table 2 Chip Count for a Microprogrammed POP-B

Chip count Description

6 Microstore. The microword width is between 39 bits and 48 bits (see Table
1). In using 8-bit-wide ROM or EPROM parts, six such chips are required.
Since the microprogram is less than 128 words (7 address bits), many
commercially available memory chips can be used here.

6 Pipeline Register (Pipe). Eight-bit-wide D flip-flops are assumed here.
This register is very expansive in terms of chip count. An alternative
would be having a special ROM type that can latch the data in the output
buffer. Another alternative is to latch the microaddress instead of the
microword. In this second design, the microword fetch and ALU-
Sequencer operations are in series rather then in parallel as in the original
design. This is a classical cost- performance tradeoff.

1 Am2910 microsequencer. The advantage of using the Am2910 instead of
the Am2909 Sequencer is evident here. The Am2909 requires two chips
instead of one Am2910 for this example.

3 Am2901 ALU bit slices. Three slices are used to provide the 12-bit-wide
PDP-8 data path.

5 (estimated) Link bit and associated hardware. The link bit in this design is constructed
of a D flip-flop, some tristate drivers, and input multiplexers. SSI
implementation of the Link bit requires 14 percent (5 out of 35) of the total
chip count. An alternative is to use a custom-made MSI chip for the Link
bit. A second alternative is to implement the Link bit in the ALU RAM
registers. In this second design, additional microcode will have to be
inserted to handle the special cases, degrading the overall performance.

3 Condition Code input multiplexer. Two 16-to-1 MUXs and two 2-to-1
MUXs.
4 PDP-8 Skip condition generate. The argument for a custom MSI chip can

also be made here.

3 Constant Mask ROM and associated ALU D input selection control. The
Constant Mask uses two ROM chips. The D input control uses one 2-to-4
decoder. The source registers for the ALU D input bus are assumed to
have build-in tristate drivers.

4 (estimated) Other miscellaneous parts.

For each target PDP-8 instruction, the microprogram must execute the following number of
microinstructions (Table 3).

On the average, 18 microwords (4 + 3+ 6 +5o0r4 + 3 + 11) are needed to do one PDP-8
target instruction. At the manufacturer-recommended microcycle time of 150 ns, and not
counting the PDP-8 Mp access time, the microprogram execution speed is 2.7 p S per target
instruction (150 ns x 18). The Mp access time is usually quoted at 1.3 p s for PDP-8/E and /M
[Bell, Mudge, and McNamara, 1978]. For an average instruction (i.e., indirect memory
reference), three memory accesses are required: instruction fetch, pointer to data (one level of
indirection), and the actual data fetch. When these are added to the 2.7-p s microprogram
execution time, the projected maximum average instruction time is 6.6 p s.

Another method of comparison involves the ISPS simulator. Several PDP-8 benchmark and
diagnostic programs were simulated. The CPU times used by each simulator were compared.
The microcoded PDP-8 uses approximately 20 times the CPU time used by the basic PDP-8
ISP. Translated into simulation CPU time, the ISP simulator of the micromachine executes
approximately 1.5 PDP-8 target instructions for every CPU second on a DEC KL-10
processor.

Table 3 Average Number of Microinstructions Executed for a Target Instruction

Words Description

4 PDP-8 instruction fetch cycle. Check PDP-8.go, fetch target instruction, increment
PC, check interrupt conditions.

3 Instruction decodes. A straightforward binary decision decode tree is implemented
in microcode. An alternative is to use the Instruction Decode Mapping ROM
capability of the Am2910. The advantage of this alternative is not clear in view of
the simple PDP-8 ISP.

6 Effective Address Calculation. Depending on the addressing mode, there are five
possibilities

2 words PDP-8 Page 0 address

4 words current page

6 words indirect address, Page 0

8 words indirect address, current page
9 words auto index

On the average, approximately six microinstructions are needed to calculate the
PDP-8 effective address (equivalent to the Page O indirect address).

5 Memory Reference Instructions. For each target instruction, the microcode fetches
data from primary memory, executes the operation, and deposits the result in
memory. Depending on the particular target instruction, anywhere between two
microinstructions (JMP) and eight microinstructions (1SZ) are needed. On the
average, five microinstructions are assumed.

(11) PDP-8 OPR group microinstructions. The decoding and execution of the PDP-8
OPR instructions are highly sequential in nature. Therefore, 11 microinstructions
executed is taken as the average.

Summary

In this chapter, the design of a microprogrammed PDP-8 was presented. The central
component of this micromachine was the AMD bit-sliced microprocessor. Although the
design was optimized toward the basic PDP-8 configuration, many issues common to all
microprogramming and RT-level hardware designs were illustrated. In simulating the
micromachine, the usefulness of the ISP descriptive language as a design tool was also
demonstrated.

References

Bell, Mudge, and McNamara [1978]

APPENDIX 1 5P OF & PDP-B EMULATOR USING THE AM2801

AND aM2810

D e
[

=

SEPDR Saabett

L.
Lt Fud RedDba<E,
FORE, gail,

(LTS

el RO,
1€y 1= RO,
HARSLL=T,

SeSaguarcar. SLatett

\.ﬂﬂ' T,
terl

s pcEt EonLes]

LPECH? A2,
FEPLO4T: 330,
[LITEER L E

ll!l'kl"l.l\ FiPL <A
Wislatres: 02 ;= FIFL $5:E3,
L Lkt

w0 L8] TLAzEE,

ztaband .
£ ERETagd
i EEaiugdls,
LIRTH | akatunilr,
LU gEF e BRELuasi,

+eLog Larartation. Fag iikerss
AHON gy
Intarsupt. reqe

tin,
[LLR NS B
HACE,

akb b cEd B,
Clodarh,

[T
ALY ERRiE,

Taop ARIGIDCLS,

AP BURE BT (e D AHREIOON B

Tomp MBI ET1 05,

L F?
AL, Cowtii

Thia BHOY ns:rlpl.mﬂ u-u-r-s L T Toming mgjor paplong.
e FOPE Lirgel mecmirg, Che migan
F3 for the [5F5 deacriptias.

-

A5F af @ FOPA smutaRor pning tes RHZICL aed ARIELY BIL s10cE R entas

Erg AT SEsdebprice dn sepanded 14 Tir 1he iF B wlde PRPO dais paih
Toe AMAELE peguacer aied 7 addreas E1is So aderesa 128 eicroearca,

arid =k BLL.

&y 2w Cads J00) bagan me lplaasr
B Shar geearasor der Lhe PR iR condition ard sicellsvecus ceerirel migeafa.

Hanic MM 4k pmsory
Switch HI idlar

fiish, PRLES
Interrpt Tnsals
Wl bit Tar itha FOPE iergel rachiee

Enyvracslan Aazar & 9 & i8
Fugs Bit ™

didiraci 11
Wi Adgrery Baginnar

Sicraprogran Ty

ipsl irm Saglater

SOLT inztruct fen, paddee La # Bita
L micra-skrdda F i
L CONEILEIR Cate

ALY Imsirecibas
Szurce

B part select
BED Finedt iagwd BElear
comsranl make aalact

Wruce Nessous Tombrel wigealia

Enalinl aih M

BE repall SEATUE

S0 wnsct oeard low
SLIF remld amarfiae
B L G i
Wy remady e sera

g @11 Ter i micro machisa

Inlar U mayand
_\:...ﬂ.r ||'|.|r
Ptrl BL dLrignmanta

rotastruction gronp

aatput af HO[HAR]

Aalats Nely
Ratuns twics
Lecremani Al
g o ming M2
Seip aa pasitiva AC
Ziip on merg AL

a8 mErd
Lk not aera
L

writehes
Halt Ly pra
alcers sutpat
Lind &by TRpul

dirsct ireut ta ALU
ALY CEFFY BE

#figrtive aliore addrsan

ult ¥ oukput

L
BLLN L5H L:pul. froam B abiTier

AL, Fab<r Aai0iCikY,
T lowp AazHl41TI. | BLL MSE aubput from B akiPLee

*=abpd. Famcat foe®

,hﬂbq';r [#a b} o=

1 Ani l'1ﬂ thw micrs raching
ame.ge ! gen tan uMscking gaing
e wl.l-.#{lh | stari st uhddr 3

I awiivatiire Lha tu
e Arleriegl
g = 1)
ragt . maunle
ErT gl ¢ 1 Lo LL 1

L nach
[

e q.l.; a lm Fial
womachan gaieg

ial

S—_—T]
bagin

| Firgt walt af
FIPL » uMd.pat

1 hakch venrd
t LB opErabices

Circial = | anlecl Biradd Bagul tn ALY
in

= Bim =,
HE G URR. L

i TR v maakEaakcia 1,
i+ Din ® sl cohen

wai;
EECOAE MiaCrir =3 | aed ALD GRfeY 9B BAE

LLLE. L1
TN RLID i Sageil @

Ingen namuction. Apart, Apeet,
ard peabia cukivs

M e FiikiNa],
Ladads], n..ﬁl.u.f.«. Lo L, "%
1 sed 2 wiLD.cpr

ulgg.opr o4 | wascpemecer oparation

sl
Colition. Codel | ~anid
i 8 SeguEcer Computaiion, lapel Emaircetion, resd sddreid.
I ceadiiise cade, @Ec.
Tamp AMZIID » SRS O(0INGE O
Foan, 3310p
[LR TR L ST Loy | 1 u!.wrl M [T EED
#nd Ewsb rooed pb w3EQ.mEF

m: (e ETH

I Secoms Padf of n.llhriu:lt
MeaLs 1 ¢ Tewa I00 157 B Famp. 2 SN 14T

Teng, AT L B P SSFHINITE:
Ba. Loakepl|) penl

LF MMOE.go =0 BLSTAHT rin. AMER
ard Poand ol e, e

[TH ! sad of atart AN

*Elond ol Ton. T pdw®®

Camdinl - I caloatate cendition codkd
)
(222 ¥ CLam1TazE3p o3 Tk @n besgs & BiLE
Tladg = §, | &30 =} alwsyz pana taat
P oD o) wlways Tedl Bl
#E1 = [Cafde = 1, I #E1 = dlmayd Fiil LEdd
I

Wil o83 abupys @eal Bel
talculnas Silp cexd it ien
IR lerual ke,
Ndgh g iRneerept Bandling

B pwlput el £

R R

ALY pparsiten osardlaw
BTN B pa

| rarget sucuvive B0N bic
1 L0 of Ehe 3 Beld 1N

aed o Orade v il Ceaafl, |
Y = [lade = ipdarrvpt. rege
1

peaiuniEr

| WSE af the) bdta IR

paga Wi
t iedsrecy mig

7o LA
o WBEAR
s Hy
Leed R,
i MLET,
W ey
L Mg,
w7 (o
o R
oo Wi,
#iz MIEL:,
#31 MCEDE
FET]

OMERFE LN |
wed ek

I wha CCaaliBen
P owhan CTag ok
{11 <5) EEFY

I opEeE LEs
mat

rokh by Donad nioag dor FIRESS
Seip.CapH¥ :w
EE!IE(LI
o j: 21].::;&‘"‘ e

(538 pue Alemr)
|5% pse KLE.A).

1 ooe Skdp.Coad =
(LRSI T
T8Il wed W85 LY
[ELL 1 aid
e 1A
ol
and,

ssibeeeilanncus. fontrelass
O EeniLigl oa
L
"-: 0P|,

v LF R Coak ol
L® may L.

= M. Tae,
o AL msn
[T EEEN S

L ow o

war oo i
w1 L
4 =k e D
LR
] Ly
wxd o0 oh EHL aF L os e L

A = A pul weak

- . r-,"-w:ll_l.

|aﬂmi L T
= WPIEE],

v Amtarraplotshle
v inierrupi.osezale = 1,

BLE v RLU Cim s 1,
#ES v DR v AEOIAY,

W o PR
a7 b e

.t
" E
ATECANESE (= MOLER)
a
-,
1 logleal end o7 Laa MR desceiakion

1 pass Leal 4T Aha

BELL

FRIEETE

e e

i:

L omEc e, HEd
i Lisk &g

i opall of gecacs

T g gl s o
ted glganl s high,

TR

Toeea of Caadlphes. Code

1 ealcul gt PIPE ship coddikidn

1 Aormal ablg gk

o
1 bmparl abip aemas
ar SFANY b

or

i

A

| wnd of Ship_Cerdd

4 da 1R g0l SRt contrel FaacLipng

PA RIS

A o
1 IF Earry. it HEE chaplamel Lisk

I atd L
P4 aly um
£hnar

Limi
Llugh clape

! sagaia Ligt
i Gmenr lomal eate

L]
L]

P wriis inie FO°3 W

B0 cisar Tairropt snalle

! agk Pefierropt ardble

| emi ALE carey AR
! gt deairacivas

| teo the barget mechive
1 skop Lhe migrs méch s

s af ba,featrel

!OLSFS al ahe BMFIID
! dnly Lhe ag
Algmhin B8 0 Kk
i AT ISP, mAki
dsncriptian.

an
froe Che

© ARZEOL gwicr Pl deevi.
rid aF e detielplitn g
eaeary mEsdnlicat lons

Fidtad bara,

ias calFakla

!OAMD RRID micrasequencer dewtr iplide ke

ABEi0 [icdify, BC00) B3, S0¢x, Minc. Incl:
ey e

Hite, imit3,
e Migd_ FAeER,

SRR I Gpaal fen Sy 8 un)

pragidured| fice
ey (1502 =

r rapit
"

in e mank ukl
glates with B iaget
Pt

Mig
Hag ddreis geiaie

Plagt ian adicers sraie [ag
vactes medram avabla Tlag

H

B ran AMZEID [masn] o= ! Bas e aEecalien Toip

] -

] 16 mga @il s> R = B eeny 1 Tarced Caalermad] laed af reg.
¢ V5 eaxk 1 ®ak put selacied addrdid
1 ARG e Full @ medblacddr § T pbaer

[whi = T 4 L | laccamsnt ac

H Ay | med @f Fun. RHEDIE

1

i i dameriprion of #(|

i

' . 1 e af PHERGD dsacripiben
i

1

91 MNAIRLL ALY esrripiioe Yn pracedural foem

CAMPANT |ECECE. ACEOR. BED:EG. ED1:DE.
[T

1
FasdGll. [xtarnal. Siake®

LTRTENL B
RMGuLLE v gaptidr,
* e,

g
ERE

oulernian,
slatlis,

ABZEIL. 1ABLrukt i, Syt ha e
rus. AHEH L{nedn] o= 2

hapia

hs » Feqld ¢ g oout = 0 geat
savrzal | aesl

amei | ek

ApgLiaa| il | awat

P o= Pilkr; Cod = gooul ewny
BGY -

and,

!opid i BRDIET diRses gl

Epir. A3ipds. M3dmis, DECH) €OT10F oe

Bulpdt carviar
W] bt

T ALY satput = §

L]
ALYty

wrry out

inftinldeaiian

inft flmge

awt Final Mogm

% OBUSE Byt AL FEkaT

s intion 8F Eawncei], 81

i ol BRI daie ik b

APPENDIX 2

SIMULATOR COMMAND FILE FOR AM2900

IMPLEMENTATION OF THE PDP-8
I
H TS ared
I Srealstar corend fila for the ARTPSD fey lesaddalyen of U= FOFY r r
1 L RE LI STUETENY
radls soLyl vmt
:. camfant Hank AM. usad o irpak to ihs SLU Hrwcl el pird il e AR |
& Hankj D pearod P DR RIS L ERTET S R ES 1
] 1 Ei
. i oy (8 |l 1A anda GG
a 2 A] O [0 B D08 433 3 000
[£l AT 080 [IREA AT R RIRE DR
§ [
i G
§ T

BN M o o om0 B o e e e . O e 0 O

B i e e o

iRn micre progems
micrn spmd el

| Mlﬂ: |.-.|.|,.|.;:|.;.-.

| [
| it

i)
il

Fll
#i

Il|w::|ﬂ faLch &ad inermgEe b
L

B
ulmwn-unw:lw::zwn
e L L T LR Tk]

CE 1T TG0 LS

WEPLO34 | IV TALERZD T

6 | PR L RO ER
:%M|{~H:lmm EHTFHIET
T EN T ERIR TR E AT 4R EE]

aftesl by lHrlu Erleulat bad
By

anlect wandiiicrs! ¥y
Fiwea 1358 Comll Cads Tor gepasl ||u¢-lM“-|

il fpatracifaes |sss m‘;rdl"rml.lm.l]
1w

-:J SO mregr
ciin, wahl Pt re Tras sapegt s
2N,

rirl midre sddreds

irpat

wned py M)

Aport. Baari [SLU NN ¢ ar mad fgesenis]
L] AL
i Fi
2 Last.FC
" ralomy, e af ferlies aiie cala.
5 #c.mb, cepp ol By satpub
alhyry - ubed

Finpat maarce o ch, teratani Mok apleck

Whees] Iasema cenirels
[(Fea 15 dexcriptisr Du.Corirol for detail]

eptiE

R BASFLasLPE=RE, [P PORE_goel galo MALT;
H [T

] IREE-MIE, gato Lae<:

B ERDEE :lr} IF ma-Tatr gate AR

L} POl guno BOM:

ALl

ALl wE ¥ LaEs. A, recemn UM
L i L

LR
AN AT 20 11454 13ATH 0
w7 e SO B TR O
i e LA
[it RECRREERT Ll Hi)

21 ARG ERLEE 12EA0 1
ﬁ S B T e]

to WE=HP[ma 3], Tetch dats ir
P @

[FLILCE mhg-ar@a g F & an, 1€ pked gein Hlad
1 GeLAtiFC b #TROD £ gk curesnl poge §
HRprmael ar ma 1 Tevm DRkiLla dedidr

IMa: oria, geea & RPRID, F [Eed ALTW

il & o= o wor ARG | crbr aukn budea

i M-IILHH 1T ra=Ruia-1rdes uul.n Hia
H rearmas] | imie. Aube- badts Geg
1HEE FiAf-ma ! Taicy rew addr

] wrim, FOTURN | maire cycle For Mp aoceda

Hp poiriod by ALU.m4

SHFTATE (RO DA EA ALIONNDGD (M 1. call S
qn'hn;-nmm.um:m- H i‘:u. ELI, ok HP[WA], 8§ TEe
r M Sspprait AU sk 9n COOE Wa
[t IJ-l l'lﬂlmﬂ‘llllﬂlﬂ IEpHA HAR-ALLL, i
| i o WL EbAR A BEEGLL i W|na jrek . gaiao EEDass
Irul.rlf:Hm anecation
FE FEFA

ot 'NJIML'HIIHH‘W iLamc: " RRigee] geid ERESED;

H 233 I IF dRissel gers JRED
.Aa|--a] cfn, cEbl Hally:
o | ET 1 UkiEse] goga FAD:
vitd | B SR MOeRD b AU ab. gobs DMOan:
[LIREL] L H LADrLNE Sl At gobe FHbee

P e

L L R e Rl e

BEEi: B

iha olber d imsiroctiess
AF AN ANFD

pEmady
33k R
MY 375 pea kT4 14014 10850

roop B bapnruchien, SOTn
oem an & turs el T
LR e
B LR R TFRETREETIT]
wll-:ll -nimmmmm‘:

==lr--lmll e
U AT 0TI AR BGRL
ERE R I EOA RO RS
1::-'--m|:l:1rrll:nli
4 | RO EEd A A2 (N
136 1= ATk 213424 EE0NTR
2E foNTEDI NSO INRLER

BE3EEIY

prramp ¥ omicra DnalresLines

FF F# RN
T4 | = LH EAGIN 1 0T IELD
ALE e AT AR NEIARED
142 |+ #1100 MBI ME 1B
141 '\:I“H?“IWIIW
O sicri L 1168
WHH 16 -AJH 22T AEROD
1465 |a# 1S T03 144200 100D
p..-l..n:.,-":rmmqm

ERELFILREE PR L]

OF i A dd

1nLIrrm-I. wnabin

i

|r |||-:='--|. girbe pA:

T TR
W e goLi i
AR, gaRtn

. calh e
A _mb v AD
BB, R MEMEN |

BIOALE mard, galc MpRHE:
e ALU.ea. gt FEG

1T qkcpiad

o GRS
(FaLl a8 & AITT

Hub.outeg rar ML
LR

AU gl geio ThOw:

. dizebte anlecw, joba THOSC:

UF (AFR gen s RT
suip iF [LBsE, cond clsar Lk
ALs0

akip GF l:r-.nq. F-A7IT, cavd cong L e
al- agd

ekl 1! I.II"U

LACOLACHL. cdrfp-oit comd comg Lk

L
1F died Jota fides

Licelhcezs 11 ried |Hd [T
Litelngag, qann €

Chicineen. Tr ries pu Mg
LACrLAC/Z. gako B

17 #LCiTiek i

]
shi IF balie, ks
B

ship AF clasd

i -u-ant gio Fipac:
BL-AC b, guto EEDes:

