508

Chapter 31

A Dual-Processor Desk-Top
Computer: The HP 9845A

William D. Eads / Jack M. Walden / Edward L. Miller

I. Introduction

What differentiates a desk-top computer, as described in this
paper, from a minicomputer? Questions of this type are dangerous
and difficult to answer because of the nonspecific usage of the
terms and the wide variety of understandings of their meanings on
the part of readers. Nevertheless, some useful generalizations can
be extracted from common usage, even if they do not apply to all
minicomputers or desk-top computers, or to all users.

First, a desk-top computer, unlike a minicomputer, is a
complete system that necessarily has a high degree of physical
integration of its elements. It has an input device (a keyboard), a
display device (a CRT or a single-line display), a mass storage
device (mag card, cassette, or floppy disk, for example), a
processor, memory, connectors for external 1/O devices, and
power supplies built into an integrated package which can literally
fit on the top of a desk. This high degree of integration is made
possible by the large-scale integration of the key components of
the computer, including processor, memory, and control logic for
internal peripherals.

Second, the typical minicomputer is not ready for operation
when it is received by the user, or even when all I/O devices are
connected and it is initially powered up. System software,
including the operating system, compilers, loaders, interpreters,
editors, etc., must first be loaded into memory. The system must
be told which 1/0 devices are (or may be) in the system at each I/O
port, and which software module (driver) controls each device;
this process is called I/O configuration. Only now is the system
available for use. In contrast, the desk-top computer arrives with
all system software in ROM already inside the machine, or in
packages of optional ROMs that the user can easily install,
generally in less than a minute. When I/O devices are attached,
the computer can then generally determine for itself the device at
each port and which driver is to be used. Users simply connect the
external peripherals they plan to use, turn on the equipment, and
begin using it. Therefore, desk-top machines incorporate a large
degree of logical integration.

A third distinction is in the method of use of the two machines.
Whereas a mini may have several languages available for the user,
and an editor which allows programs to be written in any of these
languages, a desk-top machine typically has a single language,
with a built-in program editor which understands the syntactic

restrictions of that language, and which does not allow a line with
syntax errors to be entered into the user’s program. Since there is
but one language and one user at a time, the operating system for
a desk-top machine can accomplish a task with fewer explicit
directions from the user. There is no need to use a job control
language to specify the language subsystem, any linkage editor,
the memory requirements, or what peripherals are-to be allocated

" during program execution. The user simply enters the program or

loads it from the built-in mass storage, edits if necessary, and runs
it by pressing a single key called RUN.

A similar distinguishing feature is that a desk-top computer can
be used as a simple calculator as it stands, at any time during the
entry or execution of a program. On most minis, the operating
system doesn’t understand such constructs as SIN (15) unless the
user has entered some interpretive language subsystem, such as
BASIC. Even then they don’t necessarily have keyboard
operation—but may require a program to be run.

The desk-top computer which will now be described is
Hewlett-Packard System 45, shown in Fig. 1. It contains a
typewriter-like keyboard, two cartridge drives for user program
and data storage, a 24-line X 80-column CRT, and a built-in 480
line/min 80-column thermal printer, which can make a dot-for-dot
copy of any CRT image. The internal thermal printer can also be
used as a plotter with 560 by indefinitely many independently
addressable dots. This machine has up to 64 Kbyte of user
read/write memory (R/'W), plus a separate 98-Kbyte operating
system including an editor, a BASIC interpreter, and a sophisti-
cated 1/O scheduler.

The system is presented in a top-down manner. Section II

Fig. 1. The 9845A desk-top computer.

discusses the user environment and presents the internal storage
format for user programs. The system organization, including
process and processor synchronization, control, and communica-
tion, is outlined in Sec. II1. Some details of each LSI component
are provided in Sec. IV. Section V focuses on interprocessor
communication and memory address sharing. The paper con-
cludes with some considerations about the primary I/O device,
the CRT display.

ll. The User Language and Internal Form of Programs

The language of the System 45 is ANSI BASIC, enhanced to
include string and matrix operations, subprograms, program
linking, tracing, formatted output, ‘mass storage files, and graph-
ics. To aid in readability, variable names have been extended from
a single letter or a single letter followed by a single digit to include
zero to fourteen lowercase letters, digits, and/or underscores
following a single uppercase letter. Major design goals in imple-
mentation of the BASIC interpreter were:

1 Expandability, to allow additional language features to be
added to the system by use of plug-in ROMs

2 Interactive operation, to allow the user to interrogate and
change the values of program variables, even as the
program proceeds

3 Maximizing speed of execution within the constraint of
interactive operation

4 Allowing program lines to be parsed to a form from which
they can be reconstructed, in a form similar to that in which
they were originally entered

An understanding of how these goals were achieved may best
be found in an illustrative example. As shown in Fig. 2, the first
operation in the use of the System 45 involves the keying of a
program line into the computer. Completion of the line is signaled
by depression of the STORE key. At this time the ASCII
characters constituting the program line are placed in the line
buffer, used for syntax analysis and listing. The system control
supervisor calls the syntax supervisor, whose task is to convert the
ASCII keystrokes into internal form, that is, into the format of
program lines as stored in user read/write memory. Beginning at
the left side of the source line, the syntax supervisor determines
the line number and creates the first word of internal form in the
internal form buffer (see Fig. 3). Next, the syntax supervisor
attempts to match the statement name internal form (IF) with one
within a linked list of statement keywords, a segment of which is
shown in Fig. 4. In order to allow expandability there are actually
as many as three linked lists which the syntax supervisor must
scan in searching for a match with the statement name. First, an
area of user read/write memory may contain binary programs, the

Chapter 31 | A Dual-Processor Desk-Top Computer: The HP 9845A 509

KEYBOARD
INPUT

1gg FOR 1=1 TO 1§ !» <

116 IF Time>Limit +

16§ THEN 2¢§ inTernaL | USER
124 PLOT 1,ACDD FORM R/W
LINE 19§ MEMORY

INTERNAL
FORM
LINE 114

INTERNAL
FORM
LINE 128

T

RESULT OF

PROGRAM
' EXECUTION

Ut

tag FOR T=L T0 14
11 IF Tams Luwrt=ifd THEN 289

123 FLOT IR 1

PROGRAM
LISTING

Fig. 2. The programming process.

most flexible way of adding language capability. Second, optional
ROMs, increasing language capability, may be plugged into an
option ROM port. And finally, the fundamental machine capabili-
ty which exists within every System 45 includes a fixed set of
keywords. Tables of keywords associated with the above three
mechanisms are searched in the sequence above (allowing an
optional capability to override the capability of the basic machine).
When a match is found, the character position of the keyword in
the source line is placed in the upper half of the second word of
the internal form buffer (Fig. 3), and a pointer, associated with the
element of the linked list for which a match was found, is placed in
the third word. This pointer actually points to the fourth word
down from the end of the keyword (see Fig. 4), at which location
the ROM code for execution of that statement is located. Two
words up from the execution routine is a pointer to the routine
which performs syntax analysis of the rest of the statement. The
syntax supervisor uses this address to pass control to the next
statement syntax routine.

The statement syntax routine shown in Fig. 4 for the IF
statement immediately passes control to the expression syntax
routine, which determines the order in which operations will be
performed and which operands are used by each operation. The
expression syntaxer creates an internal form for expressions which
contains a set of operations that will be sequentially executed at
run time; the present activity is still part of storing the line. Each
operation consists of an operator pointer followed by zero or more

. operand pointers. For example, the computation of A* B + C % D

involves the multiplication of A and B, followed by the multiplica-
tion of C and D, followed finally by the sum of these two products,
and consists of the three operations, as illustrated in Fig. 5.

510 Part2

Regions of Computer Space

Section 7 | Language-Based Computers

110 IF Time > Limit + 100 THEN 200
/—__’/

€——LINE NUMBER

1o
[

1 €———LENGTH OF LINE

(WORDS OF

> 7
CHARACTER LOCATION ADDRESS OF |F STATEMENT
OF |IF IN SOURCE LINE
L’:)L‘;R';ﬁ‘- < INTERNAL FORM
0 OF BOOLEAN EXPRESSION
&/ Time > Limit + 100

INTERNAL FORM)

ADDRESS OF THEN KEYWORD

POINTER TO LINE NUMBER 200

]

Fig. 3. The internal form of a typical statement.

POINTER TO NEXT KEYWORD

POINTER AND
KEYWORD CHAR ! CHAR 2
USED AT .
YNTAX TIME
S CHAR N LAST BYTE HAS 200g

OFFSET FROM CHAR 1
TO EXECUTION CODE
JUMP TO SYNTAX ROUTINE

JUMP TO LIST ROUTINE
ADDRESS POINTED TO EXECUTION CODE
BY INTERNAL CODE .

CODE TO LIST THIS STATEMENT

CODE TO SYNTAX THIS STATEMENT

such as negation or square root, result in two-word entities called
doubles. The concept of doubles and triples is extended to
n-tuples, consisting of an operator pointer followed by n—1
generalized operands. Thus the MAX function, which allows N
operands, can be written as the (N+2)-tuple shown in Fig. 6.

The contents of the first triple of Fig. 5 are three sequential
2-byte words: the first is called the operator execution pointer and
is a pointer to the first word of an execution routine (in system
ROM) which fetches and multiplies two numeric quantities; the
second and third entries are pointers into R/'W memory to the
symbol table entries of variables A and B respectively. The form of
symbol table entries for variables is shown in Fig. 7.

Within an expression, the result of each n-tuple is placed in a
unique 8-byte scratch-pad register. Forty of these registers are

Fig. 4. An entry in the linked list of statement keywords.

TRIPLE

+|O O % |o|> %

(AXB)
(C*D)

Fig. 5. Internal form for the expression A«B+CxD.

The operator-operand-operand entities in Fig. 5 are called
triples, as are all other operations involving two operands (dyadic
operations). Operations involving a single operand (monadic),

MAX
N
OPERAND 1

OPERAND N

Fig. 6. Internal form for the MAX function.

SYMBOL TABLE POINTER—>| POINTER TO DATA

TYPE OF SYMBOL LENGTH OF ENTRY

CHAR 1 CHAR 2
—
NAME OF ;
VARIABLE | CHAR N | . —

Fig. 7. Format of a symbol table entry.

available in contiguous memory, so that any single expression can
have no more than 40 operators. The first operator executed
causes the first scratch-pad register, called TEMP 1, to be filled;
the second operator fills TEMP 2, and so forth through the
expression. Therefore the expression syntax analyzer actually
creates the third triple of A * B + C # D (see Fig. 5) as +, TEMP
1, TEMP 2. TEMP 1 is the address of the temporary which will
contain A * B, and TEMP 2 is the address of the temporary for
C*D. The TEMP pointers are distinguishable from symbol table
pointers by the fact that the sign bit (most significant address bit)
is 1 for symbol table pointers and O for all other machine pointers,
including TEMP pointers.

When the expression syntax analyzer recognizes the keyword
THEN in the example of Fig. 3, it places a word in the internal
form buffer corresponding to the THEN part of the statement.
Control is returned to the statement syntax monitor, which
recognizes a line number of 200 and places into the internal form
buffer a pointer to the symbol table entry for that line; only those
lines which are referenced in the program are located in the
symbol table. Statement syntaxing is now complete, and control is
returned to the syntax monitor. At this time the length of line 110
is known, so that the syntax monitor can place the length of the
line, in words of internal form, in the lower half of the second
word of the internal form buffer. The final task of the statement
syntax analyzer is the placement of the new line in its proper
position, ordered by line number, in the user’s program area in
R/W memory.

The execution of a program as shown in Fig. 2 is most easily
understood as a sequence of operations caused by the internal
form of the program. The execution of a program in the System 45
may be viewed as sequential execution of each program state-
ment, under control of the operating system. We may therefore
use line 110, shown in Fig. 3, as an example. Execution of line 110
within a program would proceed as follows. (The internal code
pointer, ICPTR, points initially to the first word of the internal
form of the line.)

The operating system increments ICPTR by 2.

2 The operating system transfers control to code at the
address given by the word pointed to by ICPTR (IF
statement code).

3 The IF statement increments ICPTR and transfers control
to the expression executor.

4 The expression executor transfers control to the subrou-
tine, which adds two operands.

5 The add subroutine, using ICPTR, fetches Limit and 100
and adds them, placing the result in TEMP 1 and leaving
ICPTR pointing to the internal code for the “greater than”
operator; it then returns to the expression executor.

6 The expression executor transfers control to the subrou-

Chapter 31 | A Dual-Processor Desk-Top Computer: The HP 9845A 511

tine, which checks for the “greater than” relation of two
operands.

7 The “greater than” subroutine computes Time > (Limit +
100). If true, it returns 1; if false, it returns 0. It then
returns to the expression executor.

8 The expression executor transfers control to the THEN
subroutine, which returns immediately to the expression
executor, which in turn returns to the IF statement
executor.

9 If the value returned is nonzero, ICPTR is set, using the
symbol table pointer for line 200, to the beginning of that
line. If not, ICPTR points to the beginning of the next line
following 110.

10 Control is returned to the operating system.

Because of the convenient form of the internal representation of
the program line, overhead time for running the above sequence
is quite small compared to the run time required to interpret the
statement type, determine the sequence of the expression
execution, and search through the program for a destination line
number.

Listing of program lines, using the internal form of statements
(Fig. 3) and the linked list of keywords in ROM (Fig. 4), occurs in a
process converse to that of syntax analysis.- Using the first word of
the internal form, the line number is formed in the source line
buffer, followed by enough spaces (at least one) to begin the
keyword in the column position given by the upper half of the
second word of the internal form. From the third word of internal
form (the statement execution address) the list routine subtracts 3.
From Fig. 4, it can be seen that this is the address of the word
whose lower byte is the offset of the statement keyword from the
first word of execution code. This offset is then subtracted from
the statement execution address to give a pointer to the ACSII
representation of the keyword, which is located at the beginning
of that section of the linked list of keywords, and follows the
pointer to the next keyword. These characters are transferred to
the source line buffer one by one until a byte is found whose most
significant bit is set, indicating the end of the keyword. Next, the
address of the beginning of the execution code is decremented by
1 to determine the location of the routine which lists the rest of
the internal form for that statement.

Any statement lister may call the expression lister, which
determines the location of the operators and operands associated
with that expression. Associated with the ROM execution code is
the information necessary to list that operator and its operands—
including the ASCII representation of the operator and the
number of operands (and how they are arranged syntactically with
respect to the operator)—as well as the precedence of the
operator. The operator precedence, together with the sequence of
operator execution in the internal code, furnishes the expression
list monitor with sufficient information to list the expression with

512 Part 2 | Regions of Computer Space

the same sequence of operands and operators as was entered
originally, along with required parentheses. The only differences
between the entered and listed lines involve extraneous or
missing spaces and redundant parentheses.

In the example of Fig. 3, control passes from the statement
lister to the expression lister after 110 IF is listed, and it produces
Time > Limit + 100. Note that no parentheses are listed (even if
they were placed around Limit + 100 when it was keyed in). The
statement lister then adds THEN from a keyword association with
its associated execution address and finally adds 200 from the
symbol table reference. Control is then transferred back to the
operating system to output or display the now complete line in the
source line buffer.

The final feature of the language system to be discussed is that
of the user’s ability to interact with the program as it is executing,
a capability which is called having a live keyboard. Since all
variables are accessible through a symbol table, since the program
execution monitor has control of the processor at the end of the
execution of each line, and since the system was built to allow the
addition of variables and the addition or deletion of program lines
at any time (even between executions of program lines), the
capability of interacting with an executing program is extensive.
Users can interrogate or change variables as the program runs;
they can compute complex expressions; they can even delete,
add, or modify program lines as the program executes. While
these capabilities may be dangerous for a production program,
they are certainly convenient during the development and
debugging of new programs, and they can be removed during a
program run by the execution of the command SUSPEND
INTERACTIVE.

The next section provides an overview of the multiprocessor
system used to implement the user program environment just

described.

lll. System Organization and Control

Examination of Fig. 8 reveals that all communication with the
outside word is via the Peripheral Processing Unit (PPU). All
peripherals—keyboard, CRT, printer, etc.—are tied to the PPU’s
1/O bus. The Language Processing Unit (LPU) has no peripherals
attached to it, and it can communicate only with the PPU.

The PPU is responsible for managing all the system resources
except block 0 random-access memory (RAM), which is managed
by the LPU. The resources managed by the PPU are block 1
RAM, all I/O devices, and the LPU.

Interprocessor Communications

Communication between the processors is solely through the use
of shared RAM. There are no dedicated signal lines or interrupts

Section 7 | Language-Based Computers

between processors. One mode of communication is via messages
stored in buffers. Each processor has a fixed buffer of seven words
for sending a message to the other processor. These buffers are
guarded and controlled through flags. The second mode of
communication is quite diverse. Certain words throughout RAM
are allocated as convenient for the processes needing them. They
are used as flags, semaphores, tables, etc., to synchronize and
control the two processors in ways that are specific to the
particular task.

In this control/communication mechanism, there are several
cases where a processor must have exclusive access to a table,
counter, or buffer area; i.e., while one processor is using this area,
the other processor must not be allowed access into it. This kind of
exclusive access can be rigorously controlled by the use of a
two-flag exclusion algorithm first proposed by T. Dekker [Shaw,
1974). This algorithm is implemented (in a somewhat simplified
form) in the HP 9845A to control LPU/PPU access to critical
constructs. For example, the LPU alone can create buffers; once
created, a buffer can be filled by either the PPU or the LPU. Both
the LPU and PPU may have occasion to read from or modify a
given buffer. Buffers may be destroyed by either the PPU or LPU.
Clearly, such cooperative use of buffers requires controlled
access.

The simplified two-flag algorithm of Fig. 9, implemented in the
HP 9845A, does not include the case of mutual exclusion, which,
in the general case, could lead to endless synchronized deadlock if
not accounted for. In the HP 9845A this cannot occur, because the
“failure” paths for the LPU and PPU are different; the LPU
“waits,” whereas the PPU “gives up” and returns to process
scheduler.

This exclusive access problem is quite fundamental in all
multiprocessor systems—which usually implies large systems. It
may surprise some to find it occurring in a desk-top machine.

/O Process Handling

The PPU establishes and controls the keyboard entry protocol.
When the user makes a complete keyboard-record entry (termi-
nated by STORE, EXECUTE, or CONTINUE), the keyboard is
disabled until the system interprets the record; i.e., the system
examines the line and determines what it should do. As soon as
the record is interpreted, the keyboard is reenabled while the
actual execution takes place. This sequencing allows concurrent
execution of a number of commands but prevents the user from
submitting a new record before the system is able to accept it. The
PPU allows concurrent execution of keyboard commands, and also
execution of keyboard commands concurrent with program
execution if there is no resource conflict involved. An example of a
conflict would be a GET command to load a program from a tape
cartridge, followed immediately by a REWIND of the cartridge

(BLGCK 3
INTERPRETER
AND OPTIONAL
LANGUAGE ROMS

15-BIT
ADDRESS SPACE

BLOCK 2
OPTIONAL
LANGUAGE ROMS

15-BIT

ADDRESS $PACE

BLOCK 1
OPERATING DUAL PORT
SYSTEM ROM MEMORY CONTROLLER
AND I1/0

OPTION ROMS

AYOWIW 318Y¥SSIHAAY J0 STIOM AZET

16 BI-DIRECTIONAL MULTIPLEXED ADDRESS
& DATA LINES PLUS CONTROL LINES

LPY
MAE BPC STANDARD INTERNAL
TAPE CARTRIDGE
10C SELECT CODE 15
LPU REGISTERS EMC
34237 SUPPLEMENTAL [NTERNAL
MEMORY ADDRESS LANGUAGE TAigpﬁ?g;i{?GE
EXTENDER PROCESSING UNIT
SELECT CODE 14

SWITCH REGULATED
PONER SUPPLIES,

LA CRT GRAPHICS
OPTION

16K WORDS
(LOCAL R/W MEMORY)

CLOCKS

FORMATTED BY VIRTUE OF HOW
IT WAS STORED IN MEMORY

SELECT CQDE 13
(READ AND WRITE)

7
FORMATTED SERIAL CHARACTER STREAM E)

%IN 7 BITS PLUS CONTOL LIN% CRT DISPLAY

15-BIT

ADDRESS SPACE

BLOCK 0
USER
READ/WRITE
MEMORY

LN
CRT MEMORY ACCESS
PORT WITH MULTI-

PLEXED LINE BUFFERS

(READS MEMORY)

|

|
BUFFERS 10 PLOTTERS
FOR BACK PLANE] | MAGNETIC DISCS

SANET T0¥LNOD SNTd SNA ¥Lvq 0/1 L€ 9T

AND PUNCHES
EXTERNAL SELECT PRINTERS
10 o0m8 17121 | GENERAL 1/0

EXTERNAL MAGNETIC TAPES
,> 170 BUS PAPER TAPE READERS

PPY

KEYBCARD

SAD0T8 ILVEVIIS OL FdY
AFHL SY ONOT SY TIEISSOd J¥Y T 3 O
SHO0TE OL STTOAD AUOWIW SNOINVIINNIS

1$-BIT
ADDRESS SPACE
8K WORDS
STANDARD

BPC
& BI-DIRECTIONAL MULTIPLEXED ADDRESS INTERNAL
& DATA LINES PLUS CONTROL LINES

SELECT CODE 0
{INPUT ONLY)

US

OPTIONAL
ADDITIONAL THREE
8K WORD
INCREMENTS

1 WORD=16 BITS

10C

OPTIONAL INTERNAL
THERMAL PRINTER

SELECT CODE 0
(OUTPUT ONLY)

PERIPHERAL
PROCESSING UNIT

Fig. 8. System 45 hardware block diagram.

PPU ENTRY

FP is a flag the PPU
uses to protect an
entity against LPU
access.

FL is a flag the LPU
uses to profect that
same entity from PPU
access.

FATLURE
RETURN

US ING
PROCESS

CLEAR FP
PROCESS
SCHEDULER

USING
PROCESS
CLEAR FL

Fig. 9. The two-flag method of exclusive access.

before the GET is completed. When concurrent operations
cannot be allowed, a SYSTEM BUSY message is given. Since all
peripherals are attached to the PPU, the PPU must perform all
transfers of data and programs between the desk-top computer
and peripheral devices.

I/0O processes can be initiated by the program being executed
by the LPU, or by the user via keyboard entry commands. Most
such commands can also be stored as a part of a program. The
LPU syntaxes, stores, and executes all programs; thus it must be
able to interpret and cause execution of most commands. There-
fore most commands, although processed by the PPU during
keyboard entry, are “handed over” to the LPU for interpretation.

Thus, each I/O activity is initiated by the LPU but is turned
over to the PPU to be carried out. Each task involves both
processors carrying out specific subtasks. These subtasks include
communication between processors concerning the state of the
subtasks, as well as monitoring, synchronizing, and terminating
the overall task. To explain this, each processor and its role will be

described.

513

514 Part 2 | Regions of Computer Space

PPU Process Definition

Except for initialization (power on, SCRATCH ALL) and the
Process Scheduler (which is the “idle loop™), all PPU work is
carried out by processes. When a process is needed it is invoked
by “creating” it. A user process and a keyboard process are
created during initialization. All other processes are created
dynamically at the beginnings of the various individual tasks and
are destroyed upon their individual completions.

A process is represented by at least one Process Control Block
(PCB). The PCB is a 10-word R/'W memory entity used to contain
(either directly or indirectly) all the information necessary for the
PPU to execute the associated process. Figure 10 shows the
structure of a PCB.

PCBs are taken from block 1 RAM by the PPU memory
allocator, which maintains a PCB Free List. They are linked to the
Process Tree during their active life, and are linked back to the
Free List when the process is completed. The Free List is linked
through the first word of each PCB.

Some processes need more temporary process control storage
than the 10 words of a PCB. Those 10 words are strictly allocated
in use as per Fig. 10. Additional 10-word entities called data
blocks may be obtained from the Free List; they are linked to the
PCB via the ninth word, Data Block Link (DBL).

Active PCBs are linked together in various ways through the
Brother Link (BL), Father Link (FL), and Son Link (SL), labeled
in Fig. 10. All processes invoked by the user through execution of
a program are represented and controlled by a tree of PCBs linked
to the user process (which was created at initialization and is never
destroyed). The hierarchy of processes is implemented via the SL
BL, and FL links, to create an orderly control structure. In
general, the creation of a process, communication between

- 1

CODE
15 14 876 3210

SYNTAX B8 EXECUTE | 160XXX
INPUT TTOXKX BL
KEYBOARD COMMAND | 180XXX — LPU STATUS (SHARABLE=1)

[

RUN 178XXX PROCESS LPY RUNNING -0

PROGRAM /0 128%Xx PID 1.D. UNUSED| jSE PAUSED -

MESSAGE 20X w INPUT-WAIT -3
=

KEYBOARD PRINT ALL | 140XKX_ | ooy l UNUSED MES‘SSGE = ENDED -4

- L = s

|/0 ERROR BIT-—"" | INTERRUPTED -

BROTHER LINK

B8P BUFFER POINTER HOLD |
— SHOLD 2
READY 3
FL FATHER L INK BLOCKED -4
COMPLETE -5
: SUSPEND -6
MW ME SSAGE WORD SON BLOCKED - 7
PROCESS ENTRY
PEP Lpy o
POINT SON PROCESS -
B — SON COMPLETE - 4X
SUL SON LINK FATHER PROCESS -20X

INTERRUPT SERVICE - 10X

bBL DATA BLOCK LINK

QL QUEUE LINK

PROCESS CONTROL BLOCK
(PCB)

Section 7 | Language-Based Computers

processes, and the removal of a process take place between
processes no more than one level apart in this control structure. In
this hierarchical structure, the SL points to a process at a lower
level, the FL points back up to the higher-level process, and the
BL points to associated processes at the same level.

A process tree which might arise during the execution of a
program . is illustrated in Fig. 11. The Brother Links (BLs)
represent the existence of more than one incomplete 1/0 operation
invoked by the execution of the program. This can only occur
when the system is running in the OVERLAP mode, which allows
concurrent, overlapped 1/0 operations (discussed later).

In addition to the process tree linking with SL, FL, and BL
illustrated in Fig. 11, the PCBs are linked together into other
important lists through the tenth word, i.e., the Queue Link.

Each peripheral is attached to the machine via an interface
which has a peripheral address (select code) in the range 0 to 15.
Eath I/O operation invoked by a program statement specifies
(explicitly, or implicity by system default) the peripheral address
of the device to which it is directed. When the LPU passes to the
PPU the I/O process to be handled, the PPU creates a PCB to
represent the process and links it into the Process Tree. In
addition to this process control mechanism (which is independent
of particular devices or select codes) it must also maintain
knowledge of the specific device. And if other operations to that
device exist (in the Process Tree), it must also see that the
chronological sequence is preserved. This is accomplished by also
linking the PCBs into queues—one for each peripheral address.
These queues are headed (pointed to) by a table with an entry for
each peripheral address. In addition to the actual hardware
peripheral addresses 0 to 15, there are pseudoaddresses 16, 17,
and 18, which represent various areas of the CRT: those for
PRINT, DISP (“display” command) and implied DISP.

(REPRESENTS THE OVERALL

L
EVEL ¢ OPERATING SYSTEM)
LEVEL 1 (INVOKED BY USER PRESSING
RUN KEY TO EXECUTE PROGRAM)
BL
DISP LeveL 2 CINITIATED 1/0 GENERATED BY
PROCESS EXECUTION OF THE PROGRAM)

PRINT #
PROCESS

Fig. 10. Format of a process control block (PCB).

Fig. 11. A typical process tree linking several PCBs.

In addition to the queue of operations for the peripheral
address, there is always an associated device buffer. The same
table which heads the peripheral address queues also contains
pointers to those buffers. This total construct—pointers to PCBs
in device queues, and pointers to device buffers—is called the
QTABLE.

QTABLE plays an important role in the overall process
scheduling. It was mentioned earlier that the Process Scheduler is
the PPU idle loop. What the Process Scheduler does to find
processes which can be “worked on” is to scan QTABLE for
peripheral addresses with active queues attached. If such a queune
exists, the top PCB on the queue is examined to see if that process
is in a state where anything can be done. If not, the scan continues
to the next peripheral address. If something can be done,
depending on the state of the process, it is done.

In the System 45, the normal mode of I/O transfers is
“interrupt-by-the-character,” with all transfers to the peripheral
carried out in an Interrupt Service Routine (ISR). The PPU has
vectored interrupt as part of its structure (implemented in the
Input/Output Chip, I0OC in Fig. 8). The overall process of carrying
out such tranfers occurs in three stages:

1 Queueing up of the process, obtaining the resources
required (buffers, etc.), and activation of the ISR (setting
interrupt vector table entry, ete.), followed by return of the
PPU to the idle loop or other tasks

2 Character-by-character transfer as interrupts occur and
watching for the last transfer, when interrupt transfers are
terminated

Chapter 31 | A Dual-Processor Desk-Top Computer: The HP 9845A 515

3 Final termination of the process—release of buffers, de-
queuing of PCBs, etc.

As indicated in Fig. 10, the third word of the PCB is a Process
Status Word (PSW) in which the state of the process is recorded.
During its lifetime, a process may go through a number of states to
accomplish the three stages of I/O transfer activity previously
mentioned. Figure 12 shows the state transitions possible in the
life of a PCB. The device transfers in the ISR occur during the
BLOCKED state.

Formatting Output

Formatting from internal stored form to external form (such as
ASCII character streams) is carried out in the act of transfer from
the block 0 (of memory) data buffer to the block 1 (of memory)
device buffer. This is performed by the PPU, and so it is
interesting to see how this is done within the control structure
that has been described.

To see the process involved, refer to Fig. 13. Suppose that the
LPU, in executing a program, has encountered a PRINT state-
ment with n expressions (items) in its list whose output is to be
directed to an external printer at peripheral address 8. The LPU
obtains a data buffer adequate to hold the n items (the size needed
is determined when the PRINT statement is syntaxed and stored)
from the block 0 memory manager. It sends a Start I/O message to
the PPU with three items of information—the peripheral address,
the block 0 data buffer address, and the starting address for the
PPU PRINT routine.

The LPU now begins (without further concern for the PPU) to

1/0 TRANSFER
IN PROGRESS

CREATED

PROCESS WAITING FOR
RESOURCES /

HOLD OR /
SON-HOLD [\

WAITING FOR A
FATHER OR SON
PROCESS

SON BLOCKED

DEVICE BUFFER

RETAINING A

SUSPEND

PROCESS
REMOVED

COMPLETE

Fig. 12. Possible state transitions in the life of a PCB.

516 Part 2 | Regions of Computer Space

BLOCK O MEMORY BLOCK | MEMORY

Q TABLE

ona entry for each
select code

SELECT CODE
BUFFER ADDRESS

PCB__ (Process Control Block}

one for sach
170 process

:
]
|
[
1
|
|
!
|
|
[
|
|
|
|
!
I

[—)[HEADER[DATA]---[POINTERI»--[POINTE R[-paTa]

COPY OF IMAGE [ARRAY OR(¢(STRING :

|
VALUE AREA
LPU evaluates 1/0 list. - - !

PPU begqins formatting
HEADER]FORMATTED oUTPUT]
—

From data buffers{using IMAGE)
LR ————
L

PPU initiates actual transfer

To device
“Interrupt-by-character" for

|
|
|
1
|
|
|
|
|
I all asynchronous devices
|

Fig. 13. LPU/PPU interaction during output.

evaluate the output list expressions. As each is evaluated, it is put
in the next storage cell of the data buffer, followed by a WAIT
item. Simultaneously, the PPU responds to the Start I/O message
by obtaining a PCB, filling it with the buffer pointer (BP) and
starting address (PEP), and setting it up in the Process Tree, and,
we will assume, getting it queued at the head of the appropriate
peripheral address queue. The process is in the HOLD state, but
the PPU immediately attempts to allocate resources and activate
the process. Assuming that a device buffer is available, the PPU
will immediately allocate it and set the PCB READY. The Process
Scheduler will see the READY and begin execution through the
PEP.

The routine at PEP begins the formatting. It will obtain items
from the data buffer, formatting each into the device buffer. Three
obvious possibilities exist:

1 The formatting catches up with the LPU, by encountering
the WAIT item in the buffer. The PPU will change PEP to a
“continue formatting” routine, leave the PCB READY, and
return to the Process Scheduler. This allows the PPU to
work on other processes.

2 The formatting has finished all items when it finds a “done”
item in the buffer. The PPU will set the interrupt return
vector, initiate the interrupt output, set PEP to a “clear up”
routine, BLOCK the PCB, and return to the Process
Scheduler. The PPU works on other I/O and on this I/O by
interrupt until transfer is done, then marks PCB complete.

3 The formatting generates enough data to fill the device
buffer, and so the PPU initiates I/O, sets PEP to a “record
gone, resume formatting” routine, sets PCB BLOCKED,

Section 7 | Language-Based Computers

and returns to the Process Scheduler. When the final
interrupt occurs, the process is made READY, and for-
matting resumes.

In case 1 above, the Process Scheduler, finding the PCB READY,
will execute the routine at PEP. This routine will check whether
the WAIT item is still next, or whether it has been replaced by the
LPU with data. If WAIT is there, it just returns; thus each scan of
the queues causes a recheck. Notice that there is concurrency
present in this process. The LPU is evaluating expressions and
filling the buffer while the PPU follows it (as processor time is
available) item by item in the formatting.

Device Conflicts

One additional task that is extremely important in the correct
handling of I/O is the management of possible device conflicts and
the allocation of resources. These conflicts are handled in the
Process Scheduler routines which switch a process in the HOLD
state to READY.

Some obvious things are involved in resource allocation; for
example, device buffers from the pool at block 1 R/W memory.
One item not so obvious is the DMA channel. There is only one
DMA channel available. However, DMA transfers may be desired
for several processes on different peripheral addresses. Thus, the
resource allocator must keep track of DMA channel utilization and
sequentially allocate it to processes needing it.

Another area of device conflict is the relationship between
synchronous and asynchronous devices. Synchronous devices,
such as tape transports, require service at intervals dictated by the
device. If service is not rendered when required, data are lost or
erroneous data written. A synchronous device on a low-priority
interrupt might have the processor taken away by a higher-
priority interrupt, causing it to miss an essential transfer.

If a synchronous device is protected from this by being allowed
only on high-priority interrupt levels, DMA transfers may still
cause trouble. The DMA, if activated, may “steal” so many
memory cycles that the interrupt service routine response may be
slowed to a fraction of its normal speed. Again, an essential
transfer may be missed.

These conflicts can be resolved by delaying the transfer from
HOLD to READY for processes that would create these condi-
tions.

Overlapped and Serial I/O Processing

The Process Tree and PCB linkage shown in Fig. 11 show the
existence of PCBs (and therefore active I/O processes) at the head
of three device queues: the printer for the PRINT process; the
CRT for the DISP process; and a mass storage device for the
PRINT # process. Since I/O transfers are, in general, interrupt-
by-character (or DMA for the mass storage device), a number of

processes at the heads of different queues could have the 1/0
transfers initiated and be in the BLOCKED state. Transfers would
occur randomly from one process to another as interrupts
occurred for the various devices. This is buffered and overlapped
I/0. 1t is the mode for which the System 45 I/O Process Handling
was designed. The LPU is allowed to “forge ahead,” sending new
Start I/O messages and filling new data buffers as long as memory
is available for data buffers, PCBs, and device buffers.

However, there are times when all of this overlapped activity is
not desired. For example, it disconnects the LPU execution of a
PRINT statement from the PPU outputting of the data. This can
be very confusing, particularly during program testing and
debugging.

At the end of each program line, the LPU examines a flag which
serves to control this overlapping of I/O. If the flag is in the
SERIAL mode, the LPU waits for the PPU to send it 2 message
that the output associated with that line is finished. It will then
start the next line. If the flag is in the OVERLAP mode, the LPU
does not wait for the message, but proceeds on to the next line.

The PPU does not normally send a message to the LPU upon
the completion of every I/O operation, so how does it know to do
so when the mode is SERIAL? In the discussion of formatting, it
was mentioned that the PPU knew it was at the last item of a
PRINT list when it encountered a “done” item. This item is
placed there by the LPU when it has evaluated the last item on
the list—if the mode is OVERLAP. If the mode is SERIAL, it
places a “reply” item instead of “done.” The PPU knows, when it
sees “reply,” that this is the end of the list and that it should send a
message to the LPU that the I/O process is done.

IV. The Hardware Architecture of the 9845A

The internal architecture of the 9845A hardware is illustrated in
the block diagram of Fig. 8. The major elements of the diagram
are the two processors called the Language Processor Unit (LPU)
and the Peripheral Processor Unit (PPU), and the Memory
Address Extender (MAE) with its associated four 32-kiloword
blocks of memory (block 0 through block 3). Associated with the
memory are the Dual Port Memory Controller and the CRT
Memory Access Port.

The main purpose of the LPU is to execute the user’s program.
To do this it executes a BASIC interpreter encoded in ROM
located in blocks 2 and 3 of memory. The user’s program is stored
in block 0 of R“'W memory. The main function of the PPU is to
perform /O and certain other activities. A communications
protocol involving shared memory is the basis of LPU/PPU
communication.

The LPU and PPU are both processors that, in isolation, can
command 16-bit memory address spaces. The PPU does in fact
have access to such a 64-kiloword portion of memory, i.e., block 0

Chapter 31 | A Dual-Processor Desk-Top Computer: The HP 9845A 517

and block 1. Assembly language coding for the PPU can, in fact,
ignore the memory address extension scheme altogether and
simply consider the designations of block 0 and block 1 as an
artificial distinction between the two halves of its address space.
For the LPU, however, the 64-kiloword address space is split into
parts of equal size (32 kilowords) and logically distributed among
blocks of memory, the sum of whose memory space is far in excess
of the address space of the processor. In the scheme embodied by
the MAE the LPU can also access the same memory that the PPU
does. This gives rise to the need for the Dual Port Memory
Controller, whose function is to resolve conflicts arising when the
LPU and PPU try simultaneously to access the same block of
memory.

The CRT Memory Access Port accesses memory on behalf of
the CRT to provide ongoing access to the information stored in the
system-managed CRT buffer in block 0. The alphanumeric (i.e.,
nongraphic-mode) display is formed on the basis of that informa-
tion, which must be reread each time the CRT screen is to be
refreshed.

Neither the LPU nor the PPU is a homogeneous, monolithic
entity. Each is composed of smaller functional units which are LSI
chips. Among these units are a Binary Processor Chip (BPC),
Input-Output Controller (IOC), and, for LPU only, an Extended
Math Chip (EMC). The BPCs used in the LPU and PPU are of
identical design, as are the IOCs. The main functions of a BPC are
to fetch instructions from memory, execute most instructions that
reference memory, execute various instructions that perform bit
manipulation, and accomplish program branching. Thus, the
BPCs are relatively general-purpose devices, and each serves
more or less the same general function in the LPU and PPU. The
main functions of the IOC are to provide I/O and instructions for
manipulating firmware stacks. The reason the PPU has an IOC is
to obtain both those capabilities. The LPU, however, does not do
1/0; it contains an IOC merely to obtain the use of the stack
instructions. The main function of the EMC is to perform BCD
arithmetic. This is strictly an LPU activity; therefore the PPU is
not equipped with an EMC.

Also shown in Fig. 8 is the PPU-managed I/O Data Bus and the
various peripherals that are normally permanently connected to
it. The manner in which I/O is accomplished is discussed in
conjunction with the IOC. The notion of a select code as the
address of a peripheral will be fully explained at that time. At this
point, however, it is appropriate to point out that, in general, two
peripherals cannot have the same select code. But the keyboard
and the internal thermal printer both have select code 0. This is a
special case that doesn’t cause any problems, because the
keyboard is strictly an input device and the printer is strictly an
output device.

There now follows a description of the LPU hardware. Since the
hardware description of the PPU is a subset of the LPU hardware
description, the PPU will not be described separately.

518 Part 2

Regions of Computer Space

ceramic substrate ioc

< £

Fig. 14. The processor on its substrate.

Hardware Description of the LPU

The LPU consists of seven integrated circuits mounted on a
ceramic substrate (see Fig. 14). Of these, the BPC, I0C, and
EMC are N-channel MOS LSI chips. The remaining four chips

Section 7 | Language-Based Computers

{Bi-Directional Interface Buffers, or BIBs) are entirely bipolar and
serve as buffers to connect the LSI circuitry to circuitry external to
the substrate.

Figure 15 is a block diagram of the LPU and PPU. All of the
processing capability of the processor resides in the three LSI
chips; except for inversion of the IDA Bus the four BIBs are
logically powerless. The three LSI chips communicate among
themselves, and also with the outside world, via a collection of
control signals and a 16-bit bus called the IDA Bus (IDA stands for
instruction/dataladdress). The processor uses 16-bit addressing
for memory and implements a single level of indirect addressing.!

Memory Conventions

Most of the traffic on the IDA Bus has to do with memory. Both
the address of memory locations and the contents of those
locations (data and machine instructions) are transmitted over the
IDA Bus. Further, memory can be physically distributed along the
bus. Each of the three chips in the processor contains registers
which are addressable, and of course, addressable memory also
exists external to the processor.

'Except during interrupt, when a two-level indirect is forced. This is
explained in connection with interrupts.

USED IN PPU ONLY

POWER SUPPLIES

AND GROUNDS
:—-\L’_/\/_\ - o p
N o 0] Z
Bop fansee B B g gBEE EEE 3 _
DSTM
BL
o CONTROL SIGNALS &
PABO RDW
> [PERIPHERAL) 5as1 I [____%__{;___ | ‘ e
Z | ADDRESS) 22m2 " { e
z INPUT | EXTENDED ‘ BINARY BYTE
= oUTPUT ! MATH | PROCESSOR TTON CONTROL _
= o CONTROLLER : cHip | cHiP SRS 780) 10 BUS
Q ’ |) PROCESSOR CONTROL
B | omecrion gagg 100) i (EM0) | (BPC) BUFTER ENABLE BE) CIRCUIT
CONTROL | |
! I
.[8 e —— b
Z" PRESENT IN
8-BIT DELETE FOR 8-BIT
BIB PU BIB
05Ty < L ,_I DA BUS (IDA-IDA;g) T_‘ (e m&-mls
z,
170 DATA 8-BIT AN 8-BIT 70 EXTERNAL
BUS T0 BIB ; PERIPHERAL BIB'S MEMORY BIB'S — BIB MEMORY
PERIPHERALS
HYBRID MICRO PROCESSOR

Fig. 15. Processor block diagram.

The first 32 addresses of the address space do not refer to
external memory. Instead, these addresses (0~375) are reserved to
designate addressable registers within the microprocessor. Figure
16 lists these registers. There are also a number of nonaddressable
internal-use registers in the processor. Registers range in size
from 1 to 16 bits; most are 16-bit registers.

A memory cycle involves some control lines as well as the IDA
Bus. Start Memory (STM) is used to initiate a memory cycle by
identifying the contents of the IDA Bus as an address. Either of
two memory complete signals is used to identify the conclusion of
a memory cycle. These are Unsynchronized Memory Complete
(UMC) and Synchronized Memory Complete (SMC). A line called
Read/Write (RWD) specifies the direction of data movement.
Each element in the system decodes the addresses for which it
contains addressable memory. To initiate a memory cycle, an
element in the system puts the address of the desired location on
the IDA Bus, sets the Read/Write line, and gives Start Memory. It
is part of the system definition that whatever is on the IDA Bus
when a Start Memory is given is an address of a memory (or
register) location. Then, elsewhere in the system the address is
decoded and recognized, and that agency begins to function as
memory.

Among the several service functions performed by the BPC, for

Octal
Address Name Location Description (# of Bits)
o A BrC Arithmetic Accumulator (16)
! 8 BPC Arithmetic Accumulator (16)
2 P BPC Program Location Counter (16)
3 R BPC Return Stack Pointer (16)
4 R4 10c Peripheral Activity Designator (—)
5 RS 1oc #eripheral Activity Designation (—)
6 R6 10C Peripheral Activity Designator (—)
7 R7 100 Peripheral Activity Designator (~—)
10 v 1ac interrupt Vector {upner 12 of 16)
*—> H [y 100 Peripheral Address Rogister (least 4 of 16)
2 W e Workinn Tonister (16)
t—> 13 DMAPA 10c T USB = OB & DB; 4 LSB = DMA Periph. Add. Reg.
14 DMAMA 10C DMA Memory Address & Direction Reaister (16}
15 OMAC 100 [MA Count Uodister (16)
1c c 10C Stack Pointer (1)
7 0 ~10C Stack Pointer (16)
20-23 AR? EMC 150D Arithmetic Accumulator (& x 16)
24 SE €e Shift Extond Register (Jeast 4 of 16)
> 25-27 x £Me Internal Arithmetic Register (3 X 16)
30-37 UNASS [GNED
17;;;% ARI R/W BUD Arithmetic Register (4 x 16}

*
Not available for gemeral use. Part of processes internal to a chip.

" Read register I3, produces:

CB and DB are actually discrete
registers, and while they can
onty be read by reading Ri3, [[,,,,, T l | l I I
storinging info RI3 will not

alter their values, Use the
CBL, CAYJ, .DBL and OBU machine value of DB ?M;—/
instructions for that purpose. VYalue of CB
— Select Code
| > Upper
0 % Lower

Fig. 16. The processor registers.

Chapter 31

the IOC and EMC, is the generation of a signal called RAL
(Register Access Line). This occurs whenever an address on the
IDA Bus is within the range reserved for register designation
(0-37g). RAL is used by the external memory to prevent its
response to any memory cycle having such an address.

General Description of the BPC

The BPC has two main functions. The first is to fetch machine
instructions from memory for itself, the IOC, and the EMC. A
fetched instruction may pertain to one or more of those chips. A
chip that is not associated with a fetched instruction simply
ignores that instruction. The second main function of the BPC is
to execute the 56 instructions in its own repertoire. A condensed
description of these instructions is shown in their assembly
language format in Fig. 17. These instructions include general-
purpose register and memory reference instructions, branching
instructions, bit manipulation instructions, and some binary
arithmetic instructions. Most of the BPC’s instructions involve
one of the two accumulator registers, A and B.

There are four addressable registers within the BPC, and they
have the following functions: the A and B registers are used as
accumulator registers for arithmetic operations, and also as source
or destination locations for most BPC machine instructions
referencing memory. The R register is an indirect pointer into an
area of Read/Write memory designated to store return addresses
associated with nests of subroutines encountered during program
execution. The P register contains the program counter; its value
is the address of the memory location from which the next
machine instruction will be fetched.

Upon the completion of each instruction the program counter
(P register) has been incremented by 1, except for the instructions
JMP, JSM, and RET, and for SKIP instructions whose SKIP
condition has been met. For those instructions the value of P will
depend on the activity of the particular instruction.

Indirect Addressing Indirect addressing is a technique in which
an instruction that references memory treats the first one or more
references as an intermediate step in referencing the final
destination. An intermediate reference yields the address of the
next location to be referenced. When an intermediate location can
point to yet another intermediate location, such addressing is
termed multilevel indirect addressing. The BPC implements
single-level indirect addressing for all memory references except
those of a single special case. That special case involves two levels
and occurs during an interrupt. Indirect addressing is not a
property of the memory; it is a property of the chips that use the
memory. Any chip that is to implement instructions employing
indirect addressing must contain special “gear works” for that

" purpose.

To indicate indirect addressing for a memory-reference instruc-
tion, bit 15 of that particular instruction will be set. During

A Dual-Processor Desk-Top Computer: The HP 9845A 519

520 Part 2 | Reglons of Computer Space

Section 7 | Language-Based Computers

MEMORY REFERENCE

(M 1S AN ASSEMBLY LANGUAGE LABEL, OR
EXPLICIT ADDRESS)
([, U} 1S THE INDIRECT SPECIFIER)

D% M 1,1
LOAD A (OR B) FROM M.
cPy M [,
COMPARE THE CONTENTS OF M WiTH
THE CONTENTS OF A (OR B); SKIP
IF UNEQUAL.
ADH M T, 1]
ADD THE CONTENTS OF M TO A (OR B.

ST% M [,1]
STORE THE CONTENTS OF A (OR B) IN
M.

JSM M |, 7]
JUMP TO SUBROUTINE. THE CONTENTS
OF THE RETURN STACK REGISTER (R)
ARE INCREMENTED BY ONE AND THE
CONTENTS OF P STORED IN R, 1.
PROGRAM EXECUTION RESUMES AT M.

1sz2 M [,1]
INCREMENT M; SKIP IF M THEN
EQUALS ZERD.

AND M {,1]
LOGICAL "AND" OF A AND M; THE
RESULT 1S LEFT IN A,

sz M [,
DECREMENT M; SKIP IF M THEN
EQUALS ZERO.

TIOR M {,1]
{NCLUSIVE "OR" OF A AND M;
THE RESULT IS LEFT IN A.

UMP M |, 1]
JUMP TO M. PROGRAM EXECUTION
CONTINUES AT LOCATION M.

RET N (,P]

RETURN. A READ R, 1 OCCURS. THAT
PRODUCES THE ADDRESS (~P:») OF THE

VALUE OF N MAY RANGE FROM -32 TO 31,
INCLUSIVE. AT THE CONCLUSION OF THE
RET R IS DECREMENTED BY ONE.

EXE O < M < 375 [,1]

EXECUTE REGISTER M. THE CON-
TENTS OF ANY REGISTER CAN BE
TREATED AS THE CURRENT INSTRUC~
TION, AND EXECUTED IN THE NORMAL
MANNER . THE NEXT INSTRUCTION
EXECUTED WILL BE THE ONE FOL{OW-
ING THE EXE M, UNLESS THE CODE IN
M CAUSES A BRANCH.

SKIP

(-32<N<31, M WITHIN N OF *, * = CUR-
RENT VALUE OF P)

RZ% *IN/M ice., (* £ N)/(M), NOT *:(N/M)
SKIP [F A (OR B) IS NOT ZERO.

RI% **N/M
SKIP IF A (OR B) IS NOT ZERO, THEN
INCREMENT A (OR B).

SZ% *IN/M
SKIP IF A (OR B) 1S ZERO.

SI% **N/M
SKIP JF A (OR B) IS ZERO, THEN
INCREMENT A (OR B).

SFi *EN/M
SKIP [F FLAG LINE SET (OR CLEAR).

SD¥ *EN/M
SKIP IF DECIMAL SET (OR CLEAR).

SS¥ *IN/M
SKIP 1F STATUS LINE SET (OR CLEARD.

SH% **N/M
SKIP [F HALT LINE SET (OR CLEAR).

ALTER

C(1F EITHER S OR C IS PRESENT THE
TESTED BIT IS SET OR CLEARED AFTER
THE TEST)

SL4% *aN/M [,S8/,C]

[...] = OPTIONAL SPECIFIERS
/ INDICATES CHOICE OF SPECIFIERS

RL% *IN/M {,5/,C]
SKIP IF THE LEAST SIGNIFICANT
BIT OF A (OR B8) IS NON-ZERO.
S%P *EN/M [,5/,C)
SKIP IF A (OR B) IS POSITIVE.

SHM *EIN/M [,S/,C]
SKIP IF A (OR B) IS MINUS.
S0% *IN/M {,S/,C!}
5KIP IF OVERFLOW SET (OR CLEAR).

SEX *IN/M [,$/,C]
SKIP IF EXTEND 1S5 CLEAR (OR SET).

COMPLEMENT

TCH
TWO'S COMPLEMENT A (OR B).

CM%
COMPLEMENT A (OR B). THE A (OR B)
REGISTER IS REPLACED BY ITS ONE'S
COMPLEMENT .

SHIFT-ROTATE
(-32<N<31)

A%R N

ARITHMETIC RIGHT SHIFT OF A (OR B).
(OR B) IS SHIFTED RIGHT N PLACES WITH
THE SIGN BIT (BIT 15) FILLING ALL
VACATED BIT POSITIONS.

SHR N
SHIFT A (OR B) RIGHT. A (OR B) IS
SHIFTED RIGHT N PLACES WITH ALL
VACATED BIT POSITIONS VACATED.

SuL N
SHIFT A (OR B) LEFT. A (OR B) 1S
SHIFTED LEFT N PLACES WITH ALL
VACATED BIT POSITIONS CLEARED.

R%R N
ROTATE A (OR B) RIGHT. A (OR B) 15

A

LATEST JSM THAT OCCURRED. THE BPC
THEN JUMPS TO ADDRESS <«<P> + N, THE

SKIP IF THE LEAST SIGNIFICANT
BIT OF A (OR B) IS ZERO.

ROTATED RIGHT N PLACES, WITH BIT ©
ROTATING INTO BIT 15.

Fig. 17. BPC machine-instructions.

execution, the contents of the referenced location will be read and
its entire 16-bit contents treated as the address of the final
destination to be read from or written into.

Memory Reference Instructions and Page Addressing Machine
instructions fetched from memory are 16-bit instructions. Some of
those bits represent the particular type to which that instruction
belongs. Other bits differentiate the instruction from others of the
same type. If a BPC machine instruction is one that involves
reading from, storing into, or otherwise manipulating the contents
of a memory location, it is said to be a memory reference
instruction. Load into A (LDA) and store from B (STB) are
examples. Each memory reference instruction contains 10 bits to
represent the address of the location that is to be referenced by
the instruction. Those 10 bits represent one of 1,024, locations on
either the base page or the current page of memory; an additional
bit (the B/C bit) in the machine instruction indicates which. As far

as the processor is concerned, its base page is always a particular,
nonchanging range of addresses that is exactly 1,024y in number.
A memory-reference machine instruction fetched from any loca-
tion in memory (i.e., from any value of the program counter) may
reference directly (i.e., without using indirect addressing) any
location on the base page. The base-page addresses are 000000s—
0007775 and 1770005-177777s.

The reason the base page was split was to provide a convenient
means to ensure that half of it would be in ROM and half in R’'W
memory, without resorting to special decoding circuits. By
separating the base page as described the desired division comes
for free, simply by putting the right kind of memory at the right
addresses.

What goes in a machine instruction’s 10-bit address field is a
displacement from some reference location, as an actual complete
address has too many bits in it to fit in the instruction. Also, it is
the responsibility of the assembler to control the B/C bit at the

time the machine instruction is assembled. It does this easily
enough by determining whether the address of the operand (or its
“value”) of an instruction is in the range 1770003 through 177777,
or 0 through 777s.

For base-page references the 10-bit field is sufficient to indicate
completely which of the 1,024 locations on the base page is to be
referenced. The 32 register addresses are considered a part of the
base page.

Current-page addressing refers to memory-reference instruc-
tions which reference a location which is not on the base page.
Since there are more than 1,024 locations that are not the base
page, the 10-bit field by itself is not enough to completely specify
the exact location involved. Also, there are two types of current
pages. Each type is also 1,024,¢ consecutive words in length. The
value of P determines the particular collection of addresses that
are the current page at any given time. This is done in one of two
distinct ways, as determined by the signal called RELA. Depend-
ing upon RELA, the BPC is said to address memory in the relative
mode or in the absolute mode. Both the BPC in the LPU and the
BPC in the PPU operate in the relative addressing mode.

In the absolute mode of addressing the memory address space is
divided into a base page and 64 possible current pages. The
possible current pages are the consecutive 1,024, word groups
beginning with 000000s. The possible current pages can be
numbered O through 63;,. Thus, the “zero page” is addresses
0000005-001777s. Note that the base page is not the same as the
zero page; the base page overlaps pages 0 and 63.

In relative addressing there are as many possible current pages
as there are values of the program counter. In the relative
addressing mode a current page is the 512,y consecutive locations
prior to (that is, having lower-valued addresses than) the current
location (value of P), and the 511, consecutive locations following
the current location.

During the execution of each memory-reference machine
instruction referencing the current page, the BPC uses the value
of the P register to form a full 16-bit address based on the 10 bits of
address contained within the instruction. How the supplied 10
bits are manipulated before becoming part of the actual address,
and how the remaining 6 bits are supplied, depends upon whether
the addressing mode is relative or absolute. Base-page addressing
requires different manipulation but is the same in either mode.

Subroutines The processor implements subroutines in the fol-
lowing way. The Jump Subroutine (JSM) instruction is used to
cause a jump (change in value of P) to the start of the subroutine.
The BPC saves the value of P that corresponds to the word of
programming that is the JSM. That value is saved in a section of
Read/Write memory called the return stack.

The return stack is a group of contiguous locations whose
starting address less 1 was initially stored in the R register (in the
BPC). Thus, R is an indirect pointer. What a JSM does is to

Chapter 31

increment the value in R and then use that new value as the
address at which to store the value of P. Once this activity is
complete, P is actually set to the address of the first word of the
subroutine and its execution commences.

A subroutine is terminated with a RET n instruction. The
essence of this instruction is to read the location that R points to,
set P to that value plus n, and then decrement R. The most
common return is a RET 1. Different values of n permit different
returns corresponding to error or other special conditions. For
instance, interrupt service routines are generally terminated with
a RET 0.

Subroutines can be nested as deep as the size of the return stack
will allow. The subroutines themselves can be in either ROM or
Read/Write memory.

Flags The BPC is capable of branching based on the condition of
each of four signals externally supplied to the chip. These signals
are Decimal Carry (DC), Halt (HLT), Flag (FLG), and Status
(STS). In the LPU the EMC acts as a source for Decimal Carry,
which represents an overflow condition during certain arithmetic
operations performed by the EMC. There is no EMC in the PPU,
and the DC signal in the PPU is controlled by the CRT. It is used
to indicate the duration of CRT retrace.

Bus Requests and Interrupts

Bus Request and Interrupt are two protocols that involve
interchip communication. Bus Request (BR) provides a way for a
chip in the processor, or even a device external to the processor
(such as the CRT), to request unfettered use of the IDA Bus. A
signal called the Bus Grant (BG) is generated if all chips and any
other interested entities agree to allow it. The requesting agency
can use the IDA Bus for whatever purpose it wants (typically to do
memory cycles). During the time that Bus Grant is in effect all
chips suspend their activity. Bus Grant can be given even in the
middle of the execution of an instruction. Because of this, the
chips do not grant a Bus Request indiscriminately. Furthermore, a
Bus Grant not requested by the IOC is used by the IOC to create
Extended Bus Grant (EXBG), which is routed from chip to chip in
a definite order; chips or other entities not at the top of the chain
can exercise the right not to pass along the signal. This allows a
Bus Request from the IOC to have a higher priority than any
entity farther down the chain. Even if both are requesting the
Bus, the IOC can “steal” EXBG by not passing it along. Farther
down the chain from the IOC, BG serves to indicate only that the
IDA Bus is being granted to somebody; a particular requesting
device must wait until it sees EXBG before it can use the bus.
An entity on the Bus may ground BG as long as BG is not

. already being given. This allows any entity anywhere on the chain

to protect its own access to the Bus against all agencies. Further,
the BPC itself refuses to issue a BG as long as any memory cycle is
in progress.

A Dual-Processor Desk-Top Computer: The HP 9845A 521

522 Part 2 | Reglons of Computer Space

During an instruction fetch a line called interrupt (INT) can
signal the other chips to which the IOC has agreed to allow an
interrupt requested by a peripheral. The management of this
decision is complicated, but once the decision is made, the I0C
signals the BPC with INT. This has to occur during a certain
period of time ending with the end of the instruction fetch. (A
signal called SYNC identifies the instruction fetch.)

What the chips in the system must do when an interrupt occurs
is to abort the execution of the instruction just fetched (it will be
fetched again, later). The INT causes the BPC to execute the
instruction JSM 10s-indirect in place of the fetched instruction.
Register address 10; is located in the IOC, and is the Interrupt
Vector register (IV). That register is a pointer into a stack of
indirect addresses for the starting locations for the various
interrupt service routines. These routines handle the traffic
needed by the interrupting peripheral. A special mechanism in
the IOC sets the bottom four bits of IV to correspond to the select
code or peripheral address of the particular peripheral that
requested the interrupt. Thus IV points to different service
routines, according to which peripheral has interrupted.

The JSM 10s-indirect causes the value of P for the aborted
instruction to be saved on the return stack. A RET 0 at the end of
the service routine results in that very instruction’s being fetched
over again, at the conclusion of the service routine.

General Description of the IOC

The IOC has two main functions. One is to manage the transfer of
information between the processor and peripheral devices. This is
done by providing capabilities classified as Standard /O, Inter-
rupt, and Direct Memory Access (DMA). The second main
function is to provide machine instructions allowing software
management of stacks in Read/Write memory. Figure 18 is a
condensed description of the machine instructions in the IOC’s
repertoire.

General Information about I/O The IOC allows up to 16
peripheral devices to be present at one time. Each peripheral
device is connected to the I/O Data (IOD) Bus, Peripheral Address
Bus, and the various control signals necessary for that particular
device’s operation. Individual 1/0 operations (exchanges of single
words) occur between the processor and one peripheral at a time,
although interrupt and DMA modes of operation can cause
automatic interleaving of individual operations. A select code
transmitted by the Peripheral Address Bus (PABO-~PAB3) identifies
which of the 16 devices is the object of an individual I/O
operation.

In addition, the peripheral interface is the source of the Flag
and Status bits for the BPC instructions SFS, SFC, SSS, and SSC.
Since there can be many interfaces, but only one each of Flag and
Status, only the interface addressed by the select code is allowed

Section 7 | Language-Based Computers

{...] = OPTIONAL SPECIFIERS
/ INDICATES CHOICE OF SPECIFIERS
DMA GROUP PU% REG. 0-7 {,1/,D]
500 PLACE THE ENTIRE WORD (W) OR THE RIGHT
SET DMA OUTWARDS. HALF (B) OF REG. INTO THE STACK POINTED
AT BY C OR D.
D1
Wy REG. 0-7 [,17,0]
SET DMA INWARDS
WITHDRAW AN ENTIRE WORD (W) OR A BYTE
DMA (8) FROM THE STACK POINTED AY BY C OR

D AND PUT IT (NTO REG. A BYTE WILL BE
ENABLE THE DMA MODE, CANCELS PCM PLACED INTC THE RIGHT HALF OF REG.
AND DOR.

cBL

C BLOCK LOWER.
REGISTER.

pCM

ENABLE THE PULSE COUNT MODE, CANCELS
DMA AND DDR.

CLEARS THE C8

cBU

DDR
€ BLOCK UPPER,

DISABLE DATA REQUEST, CANCELS DMA
AND PCM. Y1

D BLOCK LOWER.
REGISTER.

SETS THE CB REGISTER.

INTERRUPT CLEARS THE DB

EIR

ENABLE THE INTERRUPT SYSTEM, CANCELS bBU

DIR. D BLOCK UPPER.
DIR

DISABLE THE INTERRUPT SYSTEM,
CANCEL EIR.

SETS THE DB REGISTER.

/o

MEM. REF. INST. REG. 4-7 [,(]
INITIATE AN 1/0 BUS CYCLE.

STACK

I = INCREMENT STACK POINTER
D = DECREMENT STACK POINTER

STACK INST. REG. 4-7 [,1/,0]
INITIATE AN 1/0 BUS CYCLE.

Fig. 18. 10C machine-instructions.

to ground these lines. Their logic is such that if the addressed
peripheral is not present on the 1/O Bus, Status and Flag are
logically false.

IC1 and IC2 are two control lines that are sent to each
peripheral interface by the IOC. The state of these two lines
during the non-DMA transfer of information can be decoded to
mean something by the interface. Just what “something” will be is
subject to agreement between the firmware designer and the
interface designer; it can be anything they want, and it might not
be the same for different interfaces.

/O Bus Cycles The IOC’s repertoire contains no machine
instructions dedicated to I/O operations. That is, there is no
specific “output instruction,” and no specific “input instruction.”
Existing machine instructions cause I/O by referencing certain
register addresses that cause 1/O bus cycles. An I/O bus cycle is an
exchange of a word between the IDA Bus and IOD Bus, via the
Peripheral BIBs. The peripheral involved is specified by the
contents of the 4-bit PA register, which controls the peripheral
address lines. I/O bus cycles are termed read or write I/O bus
cycles, depending upon whether information is being read from or
written into a peripheral. Each of the three modes of 1/O
operation (Standard I/O, Interrupt, and DMA) utilizes I/O bus
cycles. The explanation of the various modes of I/O amounts to
showing different ways to initiate I/O bus cycles.

I/O bus cycles do not involve handshake. It is the responsibility

of the firmware not to initiate an I/O bus cycle involving a device

that is not ready. To do so will result in lost data, and there will be
no warning that this has happened.

Standard /O Standard I/O is I/O that has been explicitly
programmed by the system programmer, using explicit assembly
language coding. Standard I/O involves three activities:

1 Setting the peripheral address (in the PA register)
2 Investigating the status of the peripheral
3 Initiating an I/O Bus Cycle

During standard I/O operation, an I/O bus cycle is initiated by
any machine instruction that incorporates a reference to one of
addresses R4 through R7 (“in” the IOC). One way that can be
done is with a BPC memory-reference instruction: for instance,
STA R4 (for a write cycle), or LDA R4 (for a read cycle). However,
there are no addresses R4 through R7. The use of addresses 4-7 is
just a signal to the IOC to initiate an /O bus cycle. Each different
address produces a different combination of ICI and IC2.

The Interrupt System When the processor grants an interrupt,
the program segment currently being executed is automatically
suspended, and there is an automatic JSM to an interrupt service
(sub)routine that corresponds to the device that has interrupted.
The service routine uses Standard I/O to accomplish its task.

The IOC allows two levels of interrupt, and has an accompany-
ing two levels of priority. Priority is determined by select code:
select codes 0~7; are the lower level (priority level 1), and select
codes 10g-17; are the higher level (priority level 2). Within a
priority level all devices are of “equal” priority, and operation is
on a first-come-first-served basis; a level-1 device cannot be
interrupted by another level-1 device, but only by a level-2
device. However, priorities are not equal in the case of simultane-
ous requests by two or more devices on the same level. In such an
instance the device with the higher-numbered select code has
priority. With no interrupt service routine in progress, any
interrupt will be granted.

Devices request an interrupt by grounding one of two interrupt
request lines TRL and IRH—one for each priority level). The IOC
determines the requesting select code by means of an interrupt
poll. If the IOC grants the interrupt, it saves on an internal stack
the existing select code located in PA, puts the interrupting select
code in PA, and does a JSM-Indirect through an interrupt table to
get to the interrupt service routine. [The top of this stack is the
Peripheral Address register (PA-11g).] The stack is deep enough to
hold the select code in use prior to any interrupts, plus the select
codes for two levels of interrupt.

It is the responsibility of the firmware to maintain an interrupt
table of 16 consecutive words, starting at some Read/Write
Memory address whose four least significant bits are 0s. The
words in the interrupt table are set to the starting addresses of the
various interrupt service routines for use with the 16 different
select codes. When a peripheral is allowed to interrupt, its select

Chapter 31 | A Dual-Processor Desk-Top Computer: The HP 9845A 593

code is used to determine which interrupt service routine to jump
to. The interrupt service routine then handles the I/O operations
needed by the interrupting device.

The firmware must also store the address of the first word of the
interrupt table in the IV register (Interrupt Vector register,
address 10, located in the I0C). Those contents will merge with
the interrupting select code to produce the address of the
appropriate table entry. A two-level indirect jump is used to
arrive at the interrupt service routine. This happens automatical-
ly, because the BPC aborts its instruction fetch and generates a
JSM 1V, 1 as part of what it does during an interrupt, and because
the IOC forces the BPC to do two consecutive “first-level”
indirect accesses.

It is difficult to say specific things about interrupt service
routines in general; much depends upon the particulars of the host
software system. The next few paragraphs examine some generali-
ties relating to interrupt service routines.

The first observation is on the number of service routines. In
general, there is not a single service routine for each select code,
or even for each type of peripheral. The usual case is collections of
routines that perform related functions within the needs of a
certain class of peripheral activity; each class of activity has its own
collection.

For instance, it is unlikely that there will be a single interrupt
service routine for a disk. On the customer’s level there are many
commands in the disk’s operating system. On the firmware level
there are a series of routines that perform “fundamental units” of
activity, where each fundamental unit involves some amount of
1/0. Most commands in the user’s disk operating system are made
up of a series of these fundamental units of activity. Fundamental
units of activity for the disk are things like moving the head to a
given track, reading a given sector from a track into such and such
a buffer, and writing from such and such a buffer into a given
sector.

Assume a fairly involved user’s command for a disk is to be
performed, one that requires reading the directory on the disk to
determine the location of a certain file on the disk and then
loading that file into memory. The series of routines here include
moving the head to the start of the directory, reading through the
information in the directory sector by sector until the information
about the desired file is found, moving the head to the file’s
location, reading its header, reading its first sector, etc.

Each service routine is told or already knows which service
routine follows it for the particular high-level task at hand, and ifit
has a choice based on the way events turn out (error conditions
etc.), it knows how to handle that, too. As each new step in the
sequence requiring a different interrupt service routine is
reached, the concluding routine changes the appropriate entry of
the interrupt table to the starting address of the next service
routine. In this way a versatile collection of interrupt service
routines can serve many purposes.

524 Part 2

|

Regions of Computer Space

The computer can be almost anywhere in its internal coding
when an interrupt is granted. Since the code is suspended, with
JSM, it is obvious that the way to get back to the right spot is with
a RET 0,P. (The ,P instructs the IOC to return to the select code
in use prior to the interrupt.) But it will do no good to come back if
the items in memory related to the routine are not the same. The
interrupt service routine must save and later restore any memory
location that will be directly or indirectly disturbed by the activity
of the service routine. This could include the extend and overflow
registers of the BPC, decimal carry and shift-extend of the EMC,
and possibly CB and DB of the IOC.

The entire interrupt system can be turned off by a DIR machine
instruction. After this instruction is given the I0OC will refuse to
grant any interrupts whatsoever until the interrupt system is
turned back on with EIR. While the IOC will not grant any
interrupts, the RET 0,P works as usual so that interrupt service
routines may be safely terminated, even while the interrupt
system is turned off.

Direct Memory Access Direct memory access is a means to
exchange entire collections of data between memory and
peripherals. Such a collection must be a series of consecutive
memory locations. Once started, the process is automatic; it is
done under control of hardware in the TIOC, and regulated by
the interface.

The DMA process can transfer data in two ways: single words
are transferred one at a time, on a cycle-steal basis; or strings of
words are transferred consecutively in a burst mode. In either
instance data are transferred one word at a time. To transfer a
word, a peripheral signals the IOC, which then requests control of
the IDA Bus with BR. That results in an external halt in all other
system activity on the bus for the duration of the peripheral’s
request for DMA service. Herein lies the difference between
burst mode and cycle-steal operation: in cycle-steal operation the
peripheral ceases to request service after one word is transferred,
and requests service again when ready, while in the burst mode
the request is held to allow a series of high-speed consecutive
transfers to occur.

During a DMA transfer of a collection of data, the IOC knows
the next memory location involved, whether to input or output,
which select code to use, and (possibly) whether or not the
transfer of the entire collection is complete. This information is in
registers in the IOC, which are set up by the firmware before the
peripheral is told to begin DMA activity. After that, actual
transfers are initiated at the request of the interface.

The DMA process is altogether independent of the operation of
standard I/O and of the interrupt system and, except for theft of
the IDA Bus for memory cycles, does not interfere with them in
any way.

The four least significant bits of DMAPA specify the select code
which is to be the peripheral side of the DMA activity. During an

Section 7 | Language-Based Computers

Name Address Meaning

DMAPA (=13) DMA peripheral address
DMAMA (=14) DMA memory address
DMAC (=15) DMA count

DMAD R DMA direction

I/O bus cycle given in response to a DMA data request, the
content of the PAB Lines will be determined by the four least
significant bits of DMAPA rather than by the PA register.

DMAMA is set to the address of the first word in the block to be
transferred. This is the lowest-numbered address; after each
transfer DMAMA is automatically incremented by the IOC. A
separate one-bit register (DMAD) exists to specify the direction of
the transfer; DMAD is controlled by its own set and clear machine
instructions and is not addressable.

DMAC can, if desired, be set to n — 1, where n is the number
of words to be transferred. During each transfer the count in
DMAC is decremented. During the last transfer DMAC goes
negative and the IOC automatically generates signals which the
interface can use to recognize the last transfer. In the case of a
transfer of unknown size, DMAC should be set to a very large
count, to thwart the automatic termination mechanism. In such
cases it is up to the peripheral to identify the last transfer.

Once the control registers are set up, a “start DMA” command
is given to the interface through standard programmed I/O. The
“start DMA” command is an output I/O bus cycle with a particular
combination of IC1, IC2, and (perhaps) a particular bit pattern in
the transmitted word. The patterns themselves are subject to
agreement between the firmware designer and the interface
designer. Sophisticated peripherals using DMA in both directions
will have two start commands, one for input and one for output. It
is also possible that other information can be encoded in the start
command (the number of words to be transferred, for instance).

Stack Operations A stack that is implemented in firmware is
simply a series of consecutive memory locations accessed indirect-
ly through a pointer. The entries in the stack do not change their
physical locations in the memory during additions and deletions.
Instead, the value of the pointer is incremented or decremented.

The 1I0C implements some firmware stack-manipulation ma-
chine instructions. Two registers are provided as stack pointers: C
and D. There are eight place and withdraw instructions for
putting things into stacks and getting them out. Furthermore, the
place and withdraw instructions can handle full 16-bit words, or
pack 8-bit bytes in words of a stack. And last, there are provisions
for automatic incrementing and decrementing of the stack pointer
registers, C and D.

The mnemonics for the place and withdraw instructions are
easy to decipher. All place instructions begin with P, and all
withdraw instructions begin with W. The next character is a W or

B, for word or byte. The next character is either a C or D,
depending upon which stack pointer is to be used. There are eight
combinations, and each is a legitimate instruction.

The place and withdraw instructions outwardly resemble the
memory reference instructions of the BPC: a mnemonic followed
by an operand that is understood as an address, followed by an
optional, T or, D. The range of values that the operand may have is
restricted, however. The value of the operand must be between
0 and 7, inclusive. Thus, the place and withdraw instructions
can place from, or withdraw into; the first eight registers. These
are A, B, P, R, and R4 through R7. Therefore, the place
and withdraw instructions can initiate I/O bus cycles; they can do
1/0.

Regardless of which of ,I (increment) or ,D (decrement) is
specified, a place instruction will do the increment or decrement
of the pointer prior to the actual place operation. Withdraw
instructions do the increment or decrement after actual withdraw
operation. The reason for this is that it always leaves the stack with
the pointer pointing at the new “top of the stack,” and allows
intermixing of place and withdraw instructions without adjust-
ment of the pointer.

Because the stack in memory is composed of words rather than
bytes, some means is required to extend the addressing of the
pointer registers to include designation of bytes within the
addressed word.

Left-right indication of bytes is accomplished with a signal
called BL. BL (Byte Left Not) is in turn controlled by bit 0 of
either the C or D register. Sixteen-bit addressing is maintained by
providing an additional 1-bit register for use with each stack
pointer register. The nonaddressable registers are called CB (C
Block) and DB (D Block). They are designated block because, as
the most significant bit of the word pointer value, they divide the
address space into two halves, or blocks. It is unfortunate that this
terminology was chosen (it was done before the MAE was
developed). Do not confuse those blocks with block 0 through
block 3 of the Memory Address Extension scheme.

During the automatic increment or decrement to the pointer
register, CB and DB function as most significant seventeenth bits
of their respective registers. An advantage of having the bit that
designates the byte be the least significant bit is that it simplifies
the process of arithmetic computation upon byte addresses.

The CB and DB registers can be set to their initial values by
machine instructions for setting and clearing each register. For
instance, DBU (D Block Upper) sets the DB register; CBL (C
Block Lower) clears the CB register.

General Description of the EMC

The Extended Math Chip (EMC) provides 15 instructions. Eleven .

of these operate on BCD-coded 3-word mantissa data. Two
operate on blocks of data of from 1 to 16 words. One is a binary
multiply and one clears the Decimal Carry (DC) register. A

Chapter 31 | A Dual-Processor Desk-Top Computer: The HP 9845A 525

condensed description of these machine instructions is shown in
Fig. 19.

Unless specified otherwise, the contents of registers A, B, SE,
and DC are not changed by the execution of any of the EMC’s
instructions.

AR1 is the label of the 4-word arithmetic register located in
R/W memory, locations 1777705 through 177773s. The assembler
predefines the symbol AR1 as address 177770s.

AR2 is the label of a 4-word arithmetic accumulator register
located within the EMC, and occupying register addresses 20z
through 23;. The assembler predefines the symbol AR2 as address
20s.

SE is the label for the 4-bit shift-extended register, located
within the EMC. Although SE is addressable and can be read
from and stored into, its primary use is as internal intermediate
storage during those EMC instructions that read something from,
or put something into, AO-A3. The assembler predefines SE as
244,

DC is the mnemonic for the 1-bit decimal-carry register located
within the EMC. DC is set by the carry output of the decimal
adder. Sometimes DC is part of the actual computation, as well as
being a repository for overflow. In such cases the initial value of
DC affects the result. However, DC will usually be zero at the
beginning of such an instruction. The firmware sees to that by
various means. DC does not have a register address. Instead, it is
the object of the BPC instructions SDS and SDC (Skip if Decimal
Carry Set and Skip if Decimal Carry Clear) and the EMC
instruction CDC (Clear Decimal Carry).

It takes a special mechanism to handle BCD numbers. Done in
firmware alone, such a mechanism would be slow and cumber-
some. The EMC supplies some useful operations on portions of
BCD floating-point numbers. This trims the mechanism in size
and speeds it up significantly.

The EMC can perform operations on 12-digit BCD-encoded
floating-point numbers. Such numbers occupy 4 words of memo-
ry, and the various parts of a number are put into specific portions
of the 4 words, as shown in Fig. 20. The exponent and mantissa
signs (Es and M;, respectively) are encoded as 0 and 1 for positive
and negative, respectively. All the digits D; through D, are
encoded in BCD, while the exponent is a 10-bit signed 2's
complement number. D, is the most significant digit, and D;; is
the least significant digit. A decimal point is assumed to exist
between D; and Ds.

Except for intermediate results within the individual arithmetic
operations, D; will never be 0 unless the entire number is 0.
Sometimes, after each individual arithmetic operation the answer
needs to be normalized; that is, the digits of the answer need to be
shifted toward D; until D, is no longer 0. The exponent then
needs to be adjusted to reflect the change.

An important consideration concerning BCD arithmetic, as
implemented by the processor, is that mantissas are represented

526

THE FOUR-WORD GROUP

CLR N O -» LOCATION < A > XFR N LOCATION < A > + LOCATION < B >
O~ LOCATION < A > + 1 LOCATION < A > + 1 + LOCATION < B > + 1
o o
o o
° °

0 + LOCATION < A > + N =~ 1

THE MANTISSA SHIFT GROUP
MRX MANTISSA RIGHT SHIFT OF ARL r-TIMES, r = < 8y_3 >, AND O < r < 175 = 1519,

Ist SHIFT: < Ag_y > 2 Dyj...€ Dy > = Dy 5. Dyg 1S LOST
Jth SHIFT: 0+ Dyj....< Dy > > D 1j....Dyz IS LOST
FERCSHIFT: 0 > Dyje..u€ Dy >+ Dpyijoeo.< Diz > > Agmsy O > 0C; O Auoas

MRY MANTISSA RIGHT SHIFT OF AR2 < Bg-3 >~TIMES. OTHERWISE IDENTICAL TO MRX.
MLY MANTISSA LEFT SHIFT OF ARZ ONE TIME.

<Aooy ¥ 7 Drzi.. € DL > 2D i€ Dy > v Agy; 05 DG O % Aus

AT THE CONCLUSION OF THE OPERATION SE EQUALS < Ag_3 >,

DRS MANTISSA RIGHT SHIFT OF AR1 ONE TIME.

0> Dijeven® Dy > % Dy ai € D1z > > Agmy; 0> Auys

AT THE CONCLUSION OF THE OPERATION SE EQUALS < Ap_3 >.

NRM NORMALIZE AR2. THE MANTISSA DIGITS OF AR2 ARE SHIFTED LEFT UNTIL Dy # O.

IF THE ORIGINAL Di 1S NON-ZERO, NO SHIFTS OCCUR. [F TWELVE SHIFTS OCCUR,
THEN AR2 EQUALS ZERO, AND NO FURTHER SHIFTS ARE DONE. THE NUMBER OF SHIFTS
IS STORED AS A BINARY NUMBER IN B.

THE ARITHMETIC GROUP
CMX TEN'S COMPLEMENT OF ARl. THE MANTISSA OF AR IS REPLACED WITH ITS TEN'S

COMPLEMENT, AND DC IS SET TO ZERO.

CMY TEN'S COMPLEMENT OF AR2. THE MANTISSA OF AR2 IS REPLACED WITH 17S TEN'S

COMPLEMENT, AND DC IS SET TO ZERO.

CDC CLEAR DECIMAL CARRY. CLEARS THE DC REGISTER; O + DC.

FXA FIXED-POINT ADDITION.

DURING THE ADDITION THE EXPONENTS ARE NOT CONSIDERED, AND ARE LEFT
STRICTLY ALONE. THE SI1GNS ARE ALSQ LEFT COMPLETELY ALONE.

<AL > =Dy Dy Dym-mmmoood D12
< ARZ > 2Dy Dy Dymm——m—mel Dia
+ < DC > « INITIAL VALUE OF DC
(OVERFLOW) =+ "Do" D; D; Dgm————m-d Dyz - AR2

DC (FINAL VALUE OF DC)

LOCATION < A > + N - 1 > LOCATION < B > + N - 1

MuA

FMP

MY

<A>, , ETC., DENOTE THE CONTENTS
OF THE INDICATED REGISTER

MANTISSA WORD ADD.

DURING THE ADDITION THE EXPONENTS ARE NOT CONSIDERED, AND ARE LEFT
STRICTLY ALONE, AS ARE THE SIGNS. MwA IS INTENDED PRIMARILY FOR USE IN
ROUNDING ROUTINES.

e S B2 e
[0 Dy Dy Dyy D12
< AR2 > = Dy——--——- Ds Dyo Dy Diz
+ < DC > « INITIAL VALUE
OF DC
COVERFLOWD =+ ''Dg" Dy-—---—-— Dy Dig D1y Dy ~ AR2

OC (FINAL VALUE OF DC)

FAST MULTIPLY. THE MANTISSAS OF AR1 AND AR2 ARE ADDED TOGETHER CALONG
WITH DC AS Dy2) < Bp-3 >~TIMES; THE RESULT ACCUMULATES IN AR2,

THE REPEATED ADDITIONS ARE LIKELY TO CAUSE SOME UNKNOWN NUMBER OF OVERFLOWS
TO OCCUR. THE NUMBER OF OVERFLOWS THAT OCCURS IS RETURNED IN Ag_j.

FMP IS USED REPEATEDLY TO ACCUMULATE PARTIAL PRODUCTS DURING BCD
MULTIPLICATION. FMP OPERATES STRICTLY UPON MANTISSA PORTIONS; SIGNS AND
EXPONENTS ARE LEFT STRICTLY ALONE.
REPRESENTS THE INITIAL VALUE
& OF DC. AFTERWARDS, OC = O
< ARZ > + (C < ARl > 3 + (< Bo-z > J) + DC > AR2

0+ DC, Q= Ay_ys # OF OVERFLOWS > Ag.,

BINARY MULTIPLY USING BCOTH'S ALGORITHM, THE (BINARY) SIGNED TWO'S
COMPLEMENT CONTENTS OF THE A AND B REGISTERS ARE MULTIPLIED TOGETHER.
THE THIRTY~-TWO BIT PRODUCT IS ALSO A SIGNED TWO'S COMPLEMENT NUMBER,
AND IS STORED BACK INTO A AND B. B RECEIVES THE SIGN AND MOST-
SIGNIFICANT BITS, AND A THE LEAST-SIGNIFICANT BITS:

TN
<A>-+><A>

FAST DIVIDE. THE MANTISSAS OF ARl AND AR2 ARE ADDED TOGETHER UNTIL THE
FIRST DECIMAL OVERFLOW OCCURS. THE RESULT OF THESE ADDITIONS ACCUMULATES
INTO AR2. THE NUMBER OF ADDITIONS WITHOUT OVERFLOW (n) IS PLACED INTO B.

< AR2 > + < ARl > + < DC > > AR2 (REPEATEDLY UNTIL OVERFLOW)

THEN
0 - DC, 0 » Buys, n -+ Bo-s

FDV 15 USED IN FLOATING-POINT DIVISION TO FIND THE QUOTIENT DIGITS OF A
DIVISION. IN GENERAL, MORE THAN ONE APPLICATION OF FDV 1S NEEDED TO FIND
EACH DIGIT OF THE QUOTIENT.

AS WITH THE OTHER BCD INSTRUCTICNS, THE SIGNS AND EXPONENTS OF AR1 AND AR2
ARE LEFT STRICTLY ALONE.

Fig. 19. EMC machine-instructions.

FLOATING-POINT DATA FORMAT,

ADDRESS | 15 |4113[|2[H|1019[8|7[6 slafs]2]1]o

M Es| TWO'S COMPLEMENT EXPONENT EMPTY Ms
M+ D, Dy D3 D4
M+ 2 Dg Dg "Dy Dg
M+3 Dy Do 0 D

THE INTERNAL FLOATING POINT REPRESENTATION OF
.003587219 (= 3.587219 x 1073).

ADDRESS 15 l4]l3llZlH|lOl9r8L7[6 5'4'3121| 0
M rfr vttt 100 0 tl0 0 0 0 0j0
M+ 0011 0101 1000 otit
M+2 0010 000! 100! 0000
M+3 0000 0000 0000 0000

Fig. 20. Floating-point data format.

in a sign/magnitude format. Ten’s complements are used by the
firmware in the computational processes, but only as an interme-
diate step. Furthermore, it is done in such a way that the
automatic generation of the correct sign of a sum does not occur.
There is also the frequent need to recomplement an answer.

AR2 frequently functions as an accumulator for EMC operations
on BCD numbers, much as the A and B registers are accumulators
for the instructions ADA and ADB.

V. Memory Address Extension

General Considerations

The essence of a memory address extention scheme is the
concatenation of additional upper address bits to the addresses
sent to memory by the processor. A variety of schemes have been
devised, and many are not unlike the one to be described. In
particular, the use of registers to specify the values of the
additional bits is very common. Simple schemes simply always use
the contents of such a register to expand the address. More
flexibility than this was needed for the 9845A.

It was recognized that certain kinds of memory contents would
always be grouped together. That is, the main operating system
(whose code is in ROM), the various user’s programs (in R/'W),
operating system data, user’s data, and option ROM coding are all
occupants of groups of memory disparate but contiguous within
themselves. Furthermore, these separate collections frequently
need access to each other. The occasions when operating-system
code wishes to access the user’s program, or when the user’s
program wishes to access the user’s data, are occasions when it
would be desirable to have some sort of automatic mechanism for
changing the values of the additional address bits. Not only would
this save a lot of code (and execution time) otherwise used for
manipulating the contents of the address extension registers, but
it can also provide an external structure useful in organizing the
architecture of the internal software system.

The key features of the memory address extension scheme
explained below are these. First, there are several registers used
to determine the values of the additional address bits. There is a
means to identify the purpose for which a memory cycle is being
performed: instruction fetch, indirect reference, base-page refer-
ence, etc. Each such purpose can invoke different registers, each
providing different and previously determined additional address
bits. Note that this is not done simply on a machine instruction—
to-machine instruction basis. The process is automatic on a
memory cycle-by—memory cycle basis. This is a very important
distinction because it allows programmers to let the MAE
hardware do the work for them as their program runs, freeing
them from constantly giving machine language instructions to a
less automatic address extension device.

Second, the MAE hardware is responsive to the most signifi-
cant bit of the address produced by the processor. By controlling
the value of this bit (at programming and assembly time for direct
references and at' run time via programmer algorithms for indirect
accesses), the programmer can signal the MAE hardware whether
the additional address bits are to be selected according to the
various registers mentioned above, or are to be selected from
among fixed and predetermined values. (It could as easily have
been from a second collection of additional registers, but this
added level of flexibility was deemed unnecessary for the 9845A.)
In this way, code executing at addresses in one-half the proces-
sor’s address space can easily access data in the other half—but the
two halves of the processor’s address space are represented by a
preselected range of memory addresses, on the one hand, and by
an arbitrary range of memory address anywhere in memory, on
the other. This is of great utility in an operating system whose
controlling programming has to be able to quickly access memory
anywhere in the system, or in a system where code to be executed
can be located anywhere in memory.

As shown in Fig. 8, the computer has a memory with 128

kilowords, yet each processor has the inherent ability to address
only 64 kilowords. On the surface it might seem that each

Chapter 31

processor handles half the memory, but that is not so. Instead, the
memory is divided into four 32-kiloword blocks.

The LPU’s 64-kiloword address space is split into two 32-
kiloword blocks, as shown in Fig. 21. The Memory Address
Extender (MAE) embodies a set of conventions to dynamically
determine which blocks make up the two halves of the processor’s
address space. These conventions involve the processor’s most
significant addresses bit, the type of memory cycle (i.e., for what
purpose—instruction fetch, indirect reference, etc.), and the
contents of some additional registers in the MAE. Those registers
are R34, R35, and R37 (each is named for its octal address). These
each have two bits. The size of the registers is related to the
number of blocks managed by the MAE; in principle those
registers could be 16 bits each, allowing a possible 64K blocks of
32 kilowords each.

System programmers have exclusive control of the contents of
R34-R37. In this way they can control what particular blocks are
accessed as the MAE implements its conventions.

The memory address extension scheme is performed for the
LPU only. The address space for the PPU is exactly 64K. It just so
happens that the bottom half of that address space is the same
physical memory that the LPU calls block 1, and that the upper
half is the same as what the LLPU calls block 0. This arrangement is
somewhat arbitrary and was chosen for convenience in coordinat-
ing LPU and PPU activities. Bear in mind that the PPU has no
connection with the MAE. The function of the MAE is, in
principle, altogether separate from the notion of having the
processors share memory. If the computer had only the LPU, it
would still (presumably) have the MAE. Also, the problems

LPU PROCESSOR'S 64K ADDRESS SPACE
LOWER[I/Z OF 64K

(]
ow HIGH Low HIGH

(
0

[ONE 32K BLOCK] |

! I

|] ;

1

I

t

i

I

|

UPPERTI/2 OF 64K

—

ONE 32K BLOCK

|

\t\ ! |

) f)

ONE BLOCK WILL BE A HOME BLOCK, [

THE OTHER BLOCK WILL BE A WORKING BLOCK : .
| |

[

|

14 N
BLOCK 3 |S HOME BLOCK —~ — ~8-—— —| WORKING BLOCK(0O-3)PER R34
OR
R
| workine sLock 0-3pen R35J———a———l BLOCK 015 HOME BLOCK |
OR

4 N
] WORKING BLOCK (0-3)PER R37—|— - —&———l BLOCK O IS HOME BLOCK I

Fig. 21. Block addressing structure implemented by the memory
address extender (MAE).

A Dual-Processor Desk-Top Computer: The HP 9845A 521

528 Part 2

Regions of Computer Space

arising from both processors’ trying, at the same time, to access
block 0 or block 1, and the subsequent need for a dual-port
memory controller, are not related to memory address extension.

Basic Principles

The LPU’s processor, in terms of its internal architecture and
operation, knows absolutely nothing of the memory address
extension scheme. Regardless of how many blocks are implement-
ed by the MAE, the LPU understands only a single 64K address
space. Yet it is typical for a memory-reference machine instruction
for the BPC (refer to Fig. 17) to be fetched from (i.e., located in)
one block while its operand (the location in memory referenced) is
in a different block. Such an instance requires automatic block
switching by the MAE during the execution of the memory-
reference instruction. Figure 22 illustrates the various conditions
under which the various blocks are accessed.

An understanding of Fig. 22 requires the notion of home blocks
and working blocks. A home block is a block that is always the
accessed block whenever some particular condition is met. The
various home block designations are fixed and cannot be changed.
(The foregoing does not mean that certain blocks are always home
blocks. Rather, particular circumstances always access certain
blocks as home blocks. But any block can also be accessed as a
working block, too.) A working block is one that is designated
according to the contents of R34-R37. The circumstances which
determine which block is the home block also determines which of
R34 through R37 is used to identify the working block.

As an example, block 3 is the home block for instruction fetches,
while R34 designates the working block for instruction fetches. In
other words, the programmer can execute code in block 3 by

THESE THE MAE LISTENS TO THE NATURE OF
CONDITIONS THE MEMORY CYCLE TRAFFIC AND
PREVAIL: IMPLEMENTS THESE BLOCK ALLOCATIONS:
FOR
THESE TYPES HOME BLOCK 1S
WORKING BLOCK 1S
MORY \ :
OEJgiES: DESIGNATED BY: HOME BLOCK 1S: DESIGNATED BY:

UPPER 1/2 BASE PAGE
AUTOMATICALLY
IN BLOCK 0

ADDRESS BIT 15=0 3 R34

ALL INSTRUCTION
FETCHES, ALL LINK-
POINTER FETCHES FOR
INDIRECT REFERENCES,
AND ALL BPC DIRECT
REFERENCES

LOWER 1/2 BASE
PAGE IN BLOCK 3

10C AND EMC
MEMORY REFERENCES,
AND BPC INDIRECT

ADDRESS BIT 15=1 0 R35
FINAL DESTINATION
FETCHES
BUS GRANT (TESTER) ADDRESS BIT 15=1 i R37

Fig. 22. Table of simplified MAE operation.

Section 7 | Language-Based Computers

accessing it as home block, or, execute code out of any other block
by setting R34 to its block number and accessing that code as
working-block code.

Figure 22 shows that there are three different categories of
memory cycles: instruction fetches etc.; IOC and EMC memory
references etc.; and bus grants. The MAE listens to the nature of
the traffic on the IDA Bus and constantly classifies it according to
these categories. Each category can result in an access to either
the permanently associated home block or the programmer-
designated working block. The most significant bit of the address
determines which. That address bit was programmer-controllable
at the time the code being executed was assembled.

Some Special Considerations

Observe that, by its address, the upper half of the LPU’s base
page has the form of a working-block reference. It would appear
that there could be four different upper halves, one for each
setting of R34. However, in this operating system it is inconven-
ient to have multiple instances of the upper half of the base page.
Accordingly, the MAE automatically routes all references to the
upper half of the base page (which it recognizes by its very high
addresses) onto block 0. The PPU, of course, has its own base
page. See Fig. 23.

Whenever any part of the system addresses a location whose
address falls within the range 0-37s, inclusive, the BPC generates
a signal called RAL. This line is used by the bulk memory to
prevent itself from responding; this allows the physical location of

. those addresses to be distributed throughout the system. This

causes no problem with R34-type block allocations, as in these
cases the addressing space occupied by the registers maps into the
home block; and for any block allocation there is only ever one
home block. But for register references via indirect addressing, or
by the I0C or EMC, some wasted physical memory locations
result because it is the working block that has the address space of
the registers. So those locations, in each block, cannot be
accessed. A similar condition exists for R37-type block allocations.
These and other details of MAE operation are shown in Fig. 23.

These facts summarize MAE operation in the absence of a bus
grant:

1 The MAE knows which memory cycles are instruction
fetches.

2 If an instruction is not 2 BPC memory-reference instruc-
tion, its associated memory accesses are done thus:
a Home block is block 0.
b Working block is determined by R35.
¢ Bit 15 equal to 1 implies home block; bit 15 equal to 0
implies working block.

3 Ifan instruction is a BPC memory-reference instruction, its
associated memory accesses are done thus:

‘ageds ssaippe Nd1 papusixa ayj o} paiedwoo aoeds ssaippe Ndd 8yl ‘€2 ‘B4

SNOIL¥OOT dSTHL OLNI 0Fdd¥W SI IDNA¥ZJT§ THL Ti-aw OT-a¥W To=avH 00=3VH
‘3OVd ESYE FHL 40 7/1 WOLLOE 3HL SIONAMIITY LI AT ‘Woud 7 ALOR 3Is Z 4LON 33S 2 GION FIS 00006 Z 3LON 3as
QEHDLZ4 ST NOTIDNWISNI 04T NY NDOTE HOIHM 40 SSITAWYOTY S BLON

J

XDOTH ONINGOM
SATJ1D34S

0%000
SNOILYD0T 3$THL OINI QIddVW ST JONIUIARY IHL

‘9D¥4 dSVE THL 4O T/ 4OL JHL STONTEAIM L1 4T ‘WOMd
QIHDLEA ST NOTLONHLSNI OdT NV MDOTH HOTHM JO SSTAUVOTY b IION

‘135 ST WALSTONY ¥ THL

40 ST L1 QIATAGMA YYMAUYH IH1 A8 GIILNVEYAD ST MIVLS
NINITN FHI OL SSIDV NI4OHd AUOWIW M/¥ ESH SNIVINOD £ 40078 %0 7007 0 10018 ¥ 0078
OSTY HOTHM ‘0 XDOTE NI QILYI0T 38 ITAN NOVLS NMOLEY FHL € JLON

XXXXXO A\~

{

ssaiaae

118-S1T
*¥OSSAD0Md IKL NI SWALSIOT NdT IHL OINO QIdaAvW {ONIEOH) (ONINON) (ONINIOM) (ONTXHOM)

¥ SNOIZYOOT 3SZHL OL IONFWIAM TIV "WIHI STTEVSIC TvH1
SANSIE SNOILVOOT ISAHL SSIIOV IONNYD ONISSIHAUV LOTWIANI NdT 2 JLON

€— 3Dv4S SSIHOAY L18-§1—>

g
J &
'z ¥DOTE MOd WITHONA ¥ AINO ATIVEY LeLte 53
0 %0018 NI 3DVd IS¥E NdYT @HL OL IONANAJIE ¥ FI¥0d4 QIN0M 05 04 » | x
OL LLLLLT-000(LT 3DNVY JHL NIHLIM SIIT ONVM3AO 39¥d INTWND — — g vn
JHIL ISNVOIE XTJWIS SIONTUIJIY 3DVE I5VE ALVAUD ION ISOW ADOTE /54 40 SINIINOD A Q3NIWYIL3A SI XD07d ONINSOM EI &
ONIMIOM SIHL 40 NOTINO SIKL WOMd Q3INDEX3 38 OL 340D 04T ANY T TION N]
00000 NEo «
ge %
a8 _ =
G lea o
= |85
] =
>
8
“ XXXXXT ¥V
0 %078 [Pt
ssayaay
5 | ara-st
2
(HOH)]
LLiLt /h Y

S INV49 SN ONTUNT SINIWNSISSY X20TE ININYOM ONY XDOIG TWOH N} =smm——m—rend
TT=3vk 0T=aVH 10=3wW 00=avK

11=3vn
00000 | syarsTom ndd 7 310N 33S z 3508 aas 7 2UON 33§ 090001 7 ai0n mas % 8 - 00000 oyars157 41 TNOO0TH DNINIOM SV %1 3w
0¥0000 w® mu 0000 € ¥J0T6 HITM QISSIDIV SSIINO &8
MRS o¥o00 ~ | 28 s 3Lo8 3as SKOILYDOT 3STML WOMA GaHOLAd 5 | 5 8
w4 ASVE 04d | o | oA ol 39¥a asvA Nd1 a@ ¢ 2000 04T OR CTWT | £ 2
PTT) dcaduanstll B-0 OF 4 mm L6100 | 40 2/1 WoLLO® X€ QETEYSIA SNOTIVDOT ISAHL 3 m 4
3 a 3
> | = g
g g g) xxxxxo
oo | & XA £ %0 w0 Z %01 10 I 0% a0 ono | B { T g o y
H ssaMaav) “ SSRAAY ¢ A078 @ | ire-ct
000220 W LIg -1 (DRINHOM) (DORIXYOM} (ONINYOM) (ONTDHOM “ LI9-¢1 p— “
3 8 —] =
T9%a aSVE ndd | & - (] I :
40 2/T 0% & T @ &
LLLtLe o & e 5 Leees J 3
d9¥d ISVE NdT 40 Z/T dOL ” > > “ “ ﬂ
HLIM dYTH3A0 GTOAV Ol HMEH EREA - - — Y BT
Q3LNO0T @OVE 3SYE ndd 2/1 401 R E] S£Y 40 SINIINOD A9 O3NTWH3LIC SI XI0TE ININHOM & (% — PET— To=gvH 00TV z gz
00000T al= Zw © 00000 g5
5.2 00000 s \—,J 23 3
% mu w BE 3 o %
c |85~ 3 257 & A rERL
o |=n 51 o] 5% L € ALON FAS o]
b |8 il I E ; s | &% %
4 @ 4 R E
El 3
»
00078 H _x 0 07e & H € W0 w0 2 %074 0 1 X009 40 000w | & .43
8 [xooxxy ¥ g [Y a2 [
& mrmlum.“n: ({aWOH) & | semwaav {ONINOM) (ONIIOM) (ONEMIOM) {ONTIION) H m.www.nmuu
m i18-5T M et avoLL z
I 5] + JLON 33§ o
v 1 3108 T3S 1 310N 33S 1 qoN F3S OV m\wﬁ nan J
P [,—\ AR /_\
]
QdadVW FO¥4 2SVE Ndd Z/T 4OL OL s) —)L -]
SIONTYALM “TTY IV N&d Xg SSTIOV ON SS3WAAY Nd1 heH 40 SINAINGD AZ CINIWNILIA ST AI0TG ININUOM SS3YAY N4
L) 119-9T LQIVANYLS., 118-9T LQIVANViS.
INISSIIATY Ndd 118-5T .QUYANViS.
SIWNIYISTY AYOWIW LISYIANI-NON ONY “STHILIS
00y Add 11§-91 . porneLon — ¢ Y3INIOd-INIT “STHILIH NOILIMYLSNI INIYNG et
e RIS) © 40 MYIOHLIM 30V1d “3ONT4343 AYOMIW LOTUION] WY 40 HDL34

04 SLNMNOISSY 30078 VIV 3HL ONIYAT SINIANOISSY X008 ONIIWOH GHY M01€ JWOH Nd1 SINBNSISSY D018 INDXUOM ONY X078 MOR Ad1

529

530 Part 2 | Regions of Computer Space

a Current-page nonindirect references are almost always
made to the same block the instruction was fetched
from.

b Base-page nonindirect references are made to the
particular part of the base page specified.

¢ Block 3 contains the lower half of the base page and
block 0 has the upper half, regardless of which working
block is specified.

d For indirect references the link pointer is accessed
according to whether it is on the current page or on the
base page, as described above, but the access to the
final destination location is made according to the block
allocation rules for IOC and EMC instructions.

These facts summarize memory access during a bus grant:

1 The MAE remembers which block allocation scheme was
suspended in order to do the bus grant and will correctly
restore the suspended mode when that activity is complet-

ed.

2 During a bus grant:
a Home block is block 0.
b Working block is determined by R37.
¢ Bit 15 equal to 1 implies home block; bit 15 equal to 0
implies working block.

VI. Description of the Display System

General Description

The display is a dual raster-scan CRT display. A 12-in, high-
resolution, magnetic-deflection CRT is used to provide adequate
viewing area for high-quality alphanumeric and graphic informa-
tion. In the alphanumeric mode, up to 25 lines of 80 characters
can be displayed at one time from a standard 128-character ASCII
character set. A foreign character set can be added, as an option,
to allow the user to display either French, Spanish, German, or
Katakana. Other languages are also possible. Three methods of
highlighting information are available to the user: inverse video,
underlining, and blinking. Each of these functions can be
independently changed on a character-by-character basis. The
viewing area for 25 lines of 80 characters, called the alpha raster, is
approximately 9.3-in. by 4.8-in. This permits a matrix of 720 X
375 dots to be displayed. Characters are formed from 7 by 9 dot
matrices located in 9 by 15 dot fields.

High-resolution raster graphics can be added to the display as
an option. In the graphics mode of operation, the viewing area,
called the graphics raster, is approximately 7.9 in by 6.5 in. This
permits a matrix of 560 X 455 dots to be displayed. The graphics
raster is a separate, independent raster that is switched into
operation when the display is in the graphics mode. The dual
raster-scan capability allows the size and aspect ratio of each raster

Section 7 | Language-Based Computers

to be chosen to optimize the quality and capability of the display
for the function the user wishes to perform, and to achieve
compatibility with the internal thermal printer/plotter.

Display Quality

A considerable emphasis was placed on optimizing the design to
achieve a high-quality display. To achieve high quality in a CRT
display requires the optimization of many parameters. Some of
the most important include character size and legibility, bright-
ness, resolution, contrast, glare, focus, position distortion, and
stability. Display quality was one of the major reasons for adding
the dual raster-scan capability. The alpha raster is tailored to
display 80 adequately spaced characters per line, while using the
maximum width possible without introducing excessive distortion
due to nonuniformity in the CRT screen. A 7 by 9 character font in
a 9 by 15 cell was chosen because this matrix is sufficient to
generate aesthetically pleasing characters. The extra rows in the
cell are used for spaces, ascenders that are needed for some of the
European characters, and descenders that are used in some of the
lowercase Roman characters.

The graphics raster displays the same high-quality characters
but is limited to 62 per line. The graphics raster increases the
resolution in the vertical dimension to maximize the proportion of
screen area that can be used.

Uniform character size over the entire screen is difficult to
achieve in CRT displays. Nonlinear current drives must be
supplied to the yoke because the faceplate is not spherical. To
achieve a more accurate current waveform, an active correction
technique was employed in the display. The yoke current is
compared to a reference current generated by a diode function
generator and is corrected when a difference occurs. With this
scheme, an improvement factor greater than 2 was achieved in the
position distortion.

Since visible motion on a display is quite annoying, it was
decided to refresh the display at 60 Hz even when the line
frequency is 50 Hz to minimize flicker. Sufficient magnetic
shielding has been added to eliminate interference due to internal
sources within the mainframe itself, as well as from reasonable
external magnetic fields.

In the graphics mode of operation the CRT is treated as a
genuine peripheral with a select code and driven via the IOD Bus.
This capability is briefly considered at the end of this section.

In contrast, the alphanumeric interface is a dedicated mecha-
nism that automatically generates the CRT’s display according to
the contents of memory. It is connected to the PPU’s IDA Bus and
performs its own accesses to memory. Thus, to generate a display,
the PPU needs only to format and manage the contents of a CRT

‘display buffer in block 1 memory. The alphanumeric interface

uses bus requests to interrogate that buffer, and responds to
certain conventions regarding control bytes that are placed into
the buffer amid the data by the controlling firmware.

The control bytes and their associated conventions amount to a
command set for the alphanumeric display. Their employment
allows efficient use of the memory allocated to the CRT display
buffer. Rather than structuring the buffer to be a character-for-
character image of the display, the buffer contains a compacted
version of the data. For instance, the blanks to the right of a line
are supplied automatically by the display itself, following an
end-of-line (EOL) control character. Other control bytes instruct
the alphanumeric interface where in the buffer to begin the
display; control the location of the cursor; and specify underlining
or blinking.

The size chosen for the display buffer is large enough to contain
enough characters to fill an entire display. But because of efficient
allocation of memory (e.g., suppression of trailing blanks by EOL
control characters) the buffer is rarely full and can be loaded with
more lines of information than the CRT can display at one time.
The display buffer can hold four pages of average BASIC
statements. The controlling firmware can cause the display to
scroll through the data in the buffer in response to the operator’s
pressing various control keys on the keyboard. Scrolling requires
only the manipulation of a few control bytes, not the wholesale
rearrangement of data in the display buffer.

Alpha Display Control Logic

The Control Logic is the alphanumeric interface between the
mainframe and the display. It reads memory via DMA, processes
the data, and holds them in a format that the display can use. Each
byte of a data word represents either a combination of features to
be set or cleared, an ASCII character, or a control code for the
display. Figure 24 shows the functions that can be interpreted
from each byte.

Data bytes consist of a 7-bit ASCII code and a high-order 0, and
they will be interpreted as the corresponding ASCII code unless
the foreign character set has previously been chosen. If the
high-order bit is set, the five low-order feature bits are latched
and held until another feature byte occurs to change the state.

The EOL command fills the remainder of the current line buffer

BIT # WITHIN BYTE
7 6 5 4 3 2 1 o] MEANING
[} X X X X X X X DATA
1 o [¢] 0 o] [¢] o3 o] CLEAR ALL FEATURE LATCHES
1 O X X x x X 0/1 CLEAR/SET THE CURSOR LATCH
1 0 X X X X 0/1 X CLEAR/SET THE INVERSE VIDEO LATCH
o] X X X a/1 X X CLEAR/SET THE BLINKING LATCH
1 o] X X o/l X X X CLEAR/SET THE UNDERLINE LATCH
1 83 X o/l X X x X CLEAR/SET THE FOREIGN CHAR. SET LATCH
1 1 X X X X X 1 END OF LINE COMMAND (EOL)
1 1 X X X X X o NEW WORD ADDRESS COMMAND (NWA)

Chapter 31 | A Dual-Processor Desk-Top Computer: The HP 9845A 53]

(one of two local buffers within the CRT) with blanks. The next
data byte will be the first character of the next line of displayed
characters.

During normal operation, the Control Logic will read the data
at address 700005, complement them, and use that as the address
for the first character to be displayed. From that point on the
address will be incremented by 1 for each new data word. The
NWA command indicates that the contents of the next address are
to be interpreted as the complement of the address for the next
data word. The address will then be incremented from the new
point. '

In addition to being the pointer of the first word of a page,
700005 is also used to choose between the alpha mode and the
graphics mode. If the high-order bit is a 0 and the graphics
hardware is installed, then the display will be the graphics mode.

An example of an alpha mode data pattern is shown in Fig. 25.

As each data byte is processed, the data are placed into a 12-bit
word. The first 7 bits contain the ASCII code for the displayed
character. The last 5 bits indicate whether any ongoing highlight-
ing should be applied to this character. These feature bits were
previously specified by a control code, whereupon they were
latched by the Control Logic and were applied to every character
until the latches were changed or cleared. These 12-bit words are
stored in groups of 80 in one of two local line buffers within the

-

[1

MEMORY ADDRESS MEMORY DATA FUNCTION
70000 107776 ALPHA, FIRST ADDRESS=7000I
70001 140000 NWA, N, (IGNORED)
70002 107770 NEXT ADORESS = 70007
70007 100040 CLEAR, BLANK
70010 031053 2, +
70011 031301 2, EOL
70012 140000 NWA, N, {IGNORED)
70013 107757 NEXT ADDRESS = 70020
70020 140701 EOL, EOL
70021 140701 £0L, EOL
70032 140701 €OL, EOL
70033 140440 EOL, BLANK
70034 032301 4, EOL

TOTAL=20 WORDS

Fig. 24. The alphanumeric mode control bytes.

Fig. 25. Sample alphanumeric data pattern.

532 Part 2

Regions of Computer Space

CRT. The purpose of having two line buffers is to provide the
Display Logic with one full line of characters to display while
the Control Logic is loading the next line of 80 characters into the
other buffer. This means that the Control Logic is actually one line
ahead of the display. When the Control Logic has entered 80
characters into a line buffer, it waits for the Display Logic to
indicate that it is ready for a new line. The Control Logic provides
the Display Logic with the newly filled Line Buffer and starts to
refill the used Line Buffer with new data. This occurs for each
character line on the display. As the Control Logic completes each
line it signals the Display Logic that there is a full Line Buffer.
The Display Logic cannot wait for a new line once one has been
requested, or the data will not be displayed in the correct position
on the screen. So if a new full Line Buffer is not available when the
Display Logic indicates that it is ready for a new line, the Display
Logic will blank the video for the remainder of the page. This is
done because the Control Logic and Display Logic will not be
synchronized until the beginning of the new page. The Line
Buffer must be filled in 637 ps. This figure comes from the time it
takes to display the 15 scans that make up the dot matrix of a line
of characters. For each scan all 80 words in the buffer are read 15
times before the buffer is refilled.

The Display’s Effect on the Mainframe

On account of the nature of the display’s mode of data retrieval,
there is a definite effect on the performance of the mainframe.
Since it is necessary for the display to access memory on a regular
basis, it uses memory cycles which might have been used by the
PPU for other operations. This will inevitably slow down the PPU.
The PPU can execute about 1 million memory cycles per second.
The display must read at least one word for every two lines of
characters (two blank lines) but doesn’t need to read more than 82
words per line of characters (a feature byte and a character byte in
every word with a new word address). If a character line is 40
words in length (80 characters or partial lines with features), the
display will require 40 memory cycles/line X 25 lines/page X 60
pages/s, or 60,000 memory cycles per second. This would reduce
the PPU to the use of 940,000 memory cycles per second, or a2 6.0
percent increase in execution time. These memory cycles may
also indirectly slow the LPU by temporarily holding the Dual Port
Memory Controller in an inconvenient position, but that result is
probably negligible.

Over a short term (less than 637 ps) the display will be accessing
memory to fill a single line of characters. This rate is 158,000
memory cycles per second, which increases PPU execution time
by 23 percent (PPU will be allowed 763,000 memory cycles per
second). However, as soon as the line is complete, memory access
drops to zero until the next line needs to be refreshed.

A conflict occurs when some peripheral device, such as a disk,
attempts a burst-mode DMA and where the efficiency of the

Section 7 | Language-Based Computers

device depends upon a data transfer rate close to the maximum.
The problem arises when the display requires a sufficient number
of memory cycles to complete a character line in less than 637 s
while at the same time a disk requires data at a rate determined by
the rotating speed of the disk. If the display is allowed memory
cycles in such a DMA burst, a disk location might be past the head
when the data finally arrive. Similarly, if the display is deprived of
memory cycles during the burst, the analog scanning of the
display might have started displaying a line before the digital
circuitry has completely acquired and processed the next line
from memory. To avoid this and allow for efficient use of disk
systems the following convention has been adopted. If the display
is deprived of enough memory cycles that it cannot fill a character
line by the time that line starts to be scanned on the display, then
the remainder of the video output for that page will be blanked.
Video will be resumed at the beginning of the next instance of
displaying that page. Therefore, it is possible for the display to be
blank for about 0.3 s if a DMA occurs which reads 64 Kbyte of
memory at once. A longer blanked period can occur if smaller
DMAs occur regularly after the start of each refresh cycle.

Graphics Overview

Graphics-mode operations allows the generation of entirely
arbitrary patterns on the CRT screen through the use of a separate
graphics raster. The screen appears as a field 560 dots wide by 455
dots high. The CRT is equipped with an additional interface
(select code 13) and a 16-kiloword cache memory. A correspon-
dence between the bits in the cache memory and the dots on the
screen is established. The user’s software, with help from extra
BASIC language constructs supplied by a GRAPHICS option
ROM, can generate an image on the CRT by manipulating the
contents of the cache memory.

The graphics mode of operation has its own cursors, including
one for digitizing information presented on the screen. Also, the
CRT need not be in the graphics mode for manipulation of the
graphics memory to occur. The CRT display can be switched
between the graphics image and the regular alphanumeric format
at will.

An additional feature is the CRT-Thermal Printer dump. This
was made possible by providing the ability to use the contents of
the 16K cache memory as a source of data to drive the internal
thermal printer. That printer has a thermal printhead with 560
uniformly spaced print resistors. The Graphics Dump produces a
dot-for-dot image of the CRT’s graphics-mode display on the
printer.

References

Shaw [1974]

Section 3

Evolution of HP Calculators

Desk-top calculators present a total computation environment to
the user. The syntax and semantics of all the keys are predefined.
Individual keystrokes vary widely in power from simple addition
to complex 1/O operations. Further, support functions such as
editing, debugging aids, syntax analyzing, incremental execution,
and keyboard monitoring are not only completely defined but also
locked into hardware. This is to be contrasted with computer
systems whose instruction sets are specified and whose computa-
tional environment is defined by ever-evolving multiple layers of
software.

This section focuses on the architectures of the Hewlett-Packard
series of desk-top calculators, starting with the HP 9100A (c.
1968); its first-generation descendants, the HP 9810/20/30 (c.
1972); and its second-generation descendants, the HP 9815/35/45
(c. 1976). The series span the technology range from discrete
components through MSI to LSI in the latest generation. The
advances in technology have allowed costs to decrease while
allowing functionality to increase. Performance has increased by a
factor of 8, operating-system ROM by a factor of 25, and user RAM
by a factor of 240. These advances are graphically displayed in
Figs. 1 to 4.

These computers represent an unplanned family with no

12
1mr
|
10 -
I o
IR 7]
| 5
EE
o3
& 7
© 3
i
-
=
ce 5T
Po 4T
z
3t
2
|
1} Descrete MSI LSt
i ol 1] i !) ! L 1 | j
| 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

Fig. 1. Selling price (thousands of doliars) versus introduction
date.

128

64

Operating system ROM in Kbytes
> s

@

2 1 1 1 | I L 1 L 1

i
1968 1969 1970 1971 1872 1973 1974 1975 1976 1977 1978

Fig. 2. ROM operating system (Kbytes) versus introduction date.

128r

64

32

RAM memory in Kbytes

50

.25

. Core
125 1 1 1 i L | | i 1 |

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

Fig. 3. RAM (minimum configuration) versus introduction date.

785

786 Part 4 | Family Range, Compatibility, and Evolution

Add time {milliseconds) 14 decimal digit BCD-floating point

0.1 | i L | !] 1 | | |
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

Fig. 4. Floating point add times versus introduction date.

Section 3 | Evolution of HP Calculatorg

constraint on user compatibility between generations. Chapters
48, 49, and 31 sketch the designs of the three major generations of
Hewlett-Packard desk-top calculators. Functionality has increased
with each generation and is best exemplified by the programming
interface. HP 9100A programs consisted of arithmetic keystroke
functions and program control operations (e.g., GO TO and IF),
The HP 9800 series ranged from an algebraic language through
BASIC, traditionally a computer-based language. The perception
is that the HP 9810/20/30 series is matched to user functionality
rather than software compatibility. The HP 9845 also supports
BASIC. This section concludes, in Chap. 50, with some observa-
tions by Tom Osborne, one of the architects of the Hewlett-
Packard desk-top series.

